

Sensors in Robotic Systems

How robots sense the world.

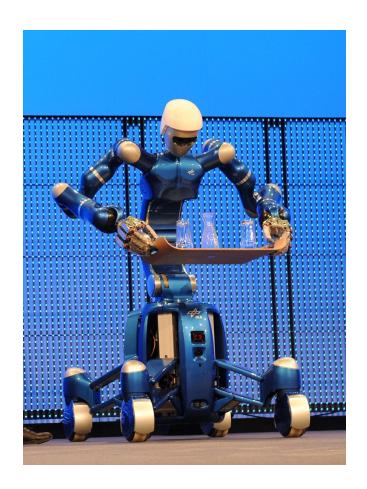
Technical details

- Meeting suggestion Tuesdays 3pm-5pm starting May 28th
- 2 presentations 30 min+ discussion, one presentation on standby.
 + review of the topic

Grading

- Grade consists of 40% presentation, rubric:
 - Organization and presentation
 - Knowledge of subject: introduction
 - Background content: adjacent papers
 - Thoroughness of information presented
 - Graphics (in PowerPoint)
 - Mechanics: typos, (grammar) errors in text
 - Length and pace: 20-22 minutes, hard cut at 23 min.

Grading


- 60% written part, rubric:
 - Based on: <u>https://welfens.wiwi.uni-wuppertal.de/fileadmin/welfens/daten/Skripte/</u> <u>SS13/Bewertungskriterieneng.pdf</u>
 - 6-8 pages IEEEconf two-column format, A4: <u>https://ras.papercept.net/conferences/support/files/ieeeconf.zip</u> <u>https://ras.papercept.net/conferences/support/tex.php</u>
- Paper Deadline:

Monday Junly 8th, 23:59:59 CET (local time Munich) via email to Andrei Costinescu: <u>andrei.costinescu@tum.de</u> or Peter Gawronski: <u>peter.gawronski@tum.de</u>

Grading deductions

- Miss your time slot without excuse failed grade.
- In case of sickness inform beforehand you may present the week after (with doctor's notice).
- Absence of up to one time is allowed if asked >1day earlier.

What is different in Robotics compared to Big Data Queries?

We need to know not only what is in the area around the robot, but also

- How big is the confidence in the correctness of the observation? How much of the object was visible...
- How certain is the system to see a specific object (similarity to other similar ones)?
- Where it is relative to the robot?
- What is the dynamic state of the observed object?
- What is the accuracy of the metric observation?

Computational Challenges in Robotics Applications

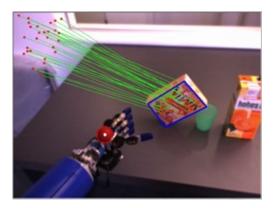
Source: Aytoindustry Newsletter

Complete knowledge about the environment –early adoption of robots in industrial apps

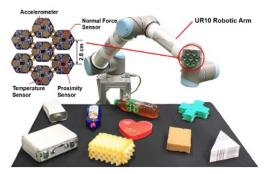
Human-Robot Interaction: understanding human gestures, predictable behavior for acceptance

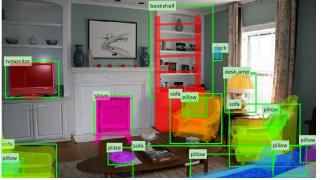
Understanding and Acting in Dynamic Environments: understanding human actions/behaviors, collision avoidance

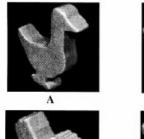
Semantic Labeling of Scenes: Knowledge about functions of scene geometry

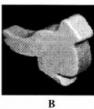


Inherent Safety to Humans: Understanding injury parameters

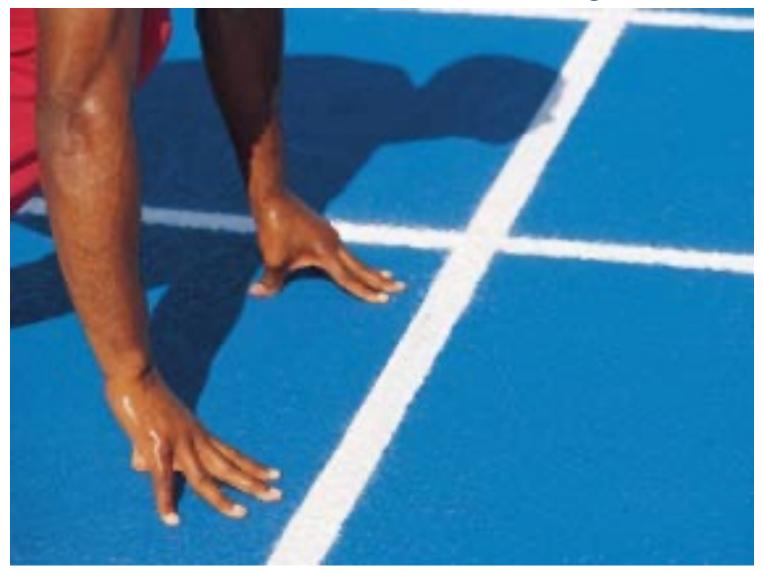

Robot Perception





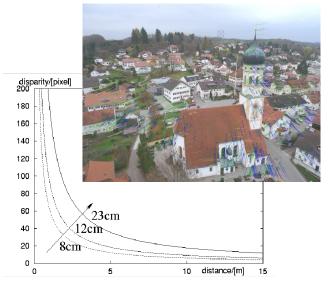


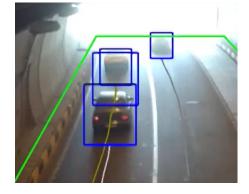
C



04.02.2022

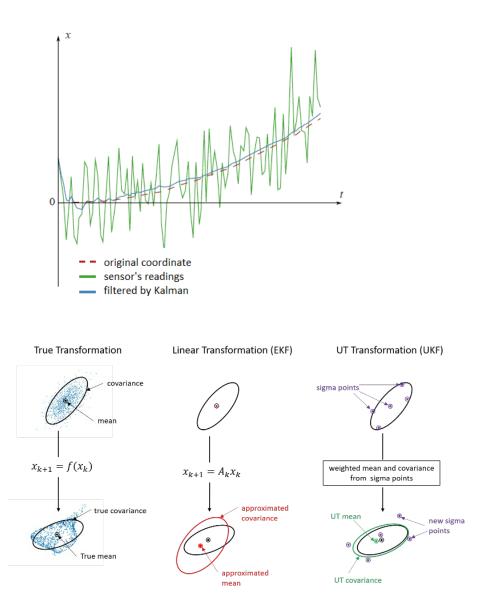
What Information is in Images?


What Information is in Images?


Problems with camera-based Measurement for Control

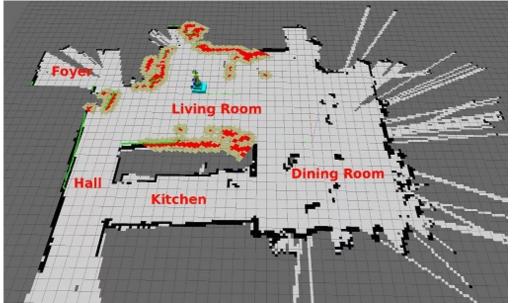
Camera by itself is too slow with 25-30Hz to stabilize a robot or monitor high dynamic motion

The quality of the reconstructed pose varies with the distance to the observed objects

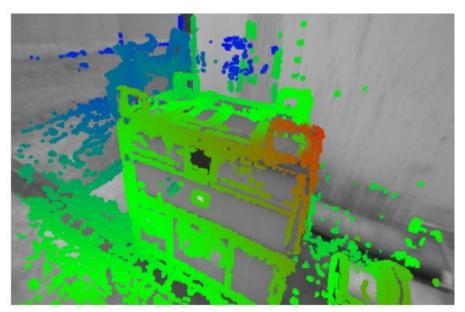

Camera can be blinded for multiple seconds in tunnels, etc.

Introduction to robot sensing

- Sensors are the only way to interact with environment
 - Needed for any kind of autonomous behavior
- Sensors are not ideal: Noisy, offset, biased, ...
- Moving robots need to learn about their world
 - Odometry, Localization, Servoing, Exploration, Mapping
- Different sensors must be merged
- Objects need to be recognized to be interacted with

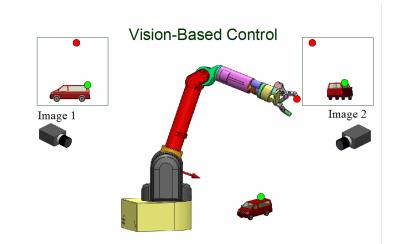

Input filtering

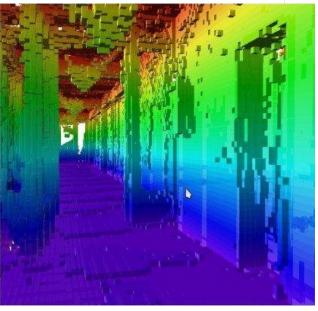
- Input is noisy. Very noisy.
- Filtering techniques from 1960s to modern times
- T01 (Extended) Kalman Filter
- T02 Unscented Kalman Filter Particle filters



SLAM

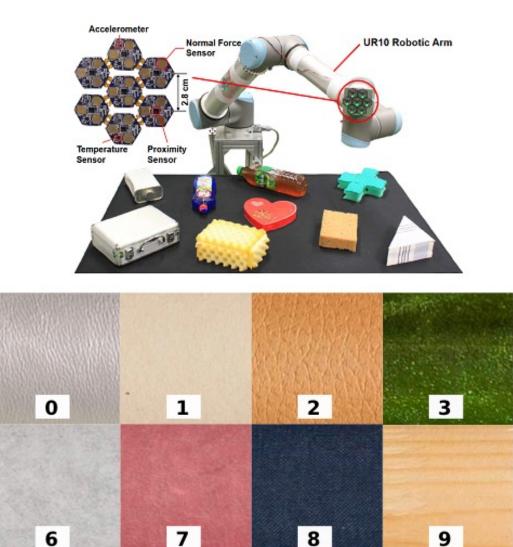
- Simultaneous Localization and Mapping
- Visual SLAM
 - T03 Feature-based
 - T04 Featureless


Seminar - Sensors in Robotic Systems

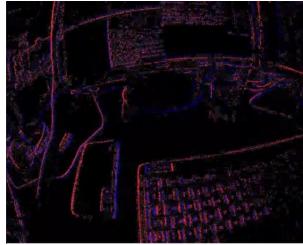

Visual control/mapping

- T05 Visual control: Robot is controlled by where the object should be from cameras view
 - No 3D reconstruction or similar

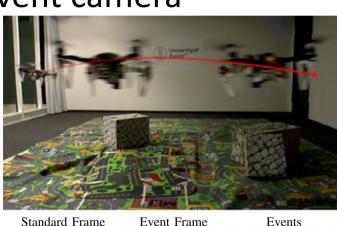
• Feature points can be saved raw, clustered, keyframe-based...

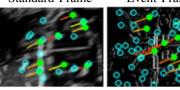


Tactile exploration

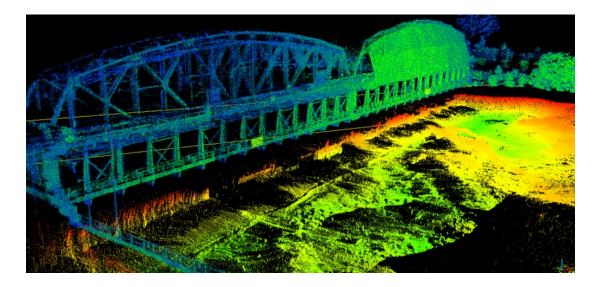

• T07 Tactile exploration

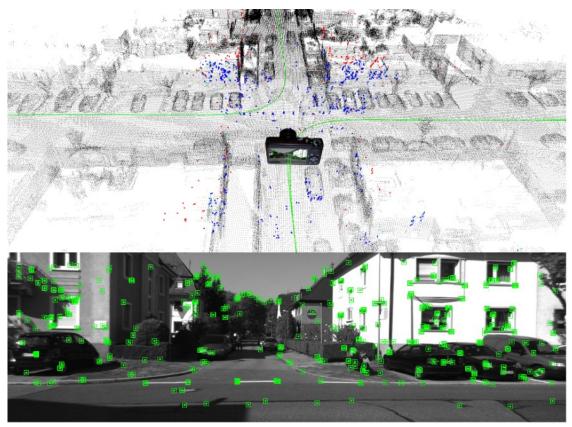
• T08 Tactile material classification


Event cameras

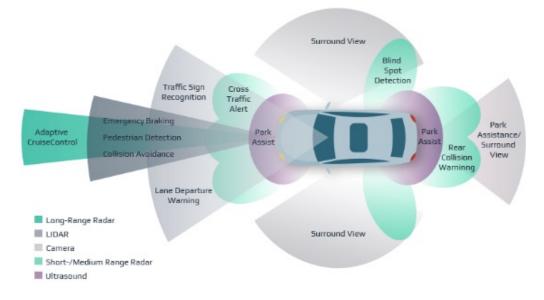

- Register changes in brightness per pixel
 - Superfast! Expensive! (new!)
- Completely different approaches than traditional cameras
- T09 Reconstruct "classical" image and video from event camera
- T10 Robot control with event cameras

Seminar - Sensors in Robotic Systems





Localization in LIDAR/Camera data

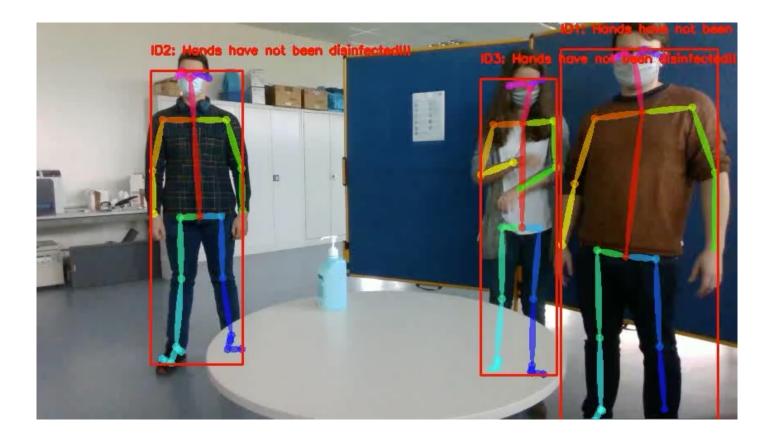

- Localization can be done from different sensors
- T11 LIDAR
- T12 Camera


Sensor Fusion

- Two main problems:
- T13 Match proprio- to exterioceptive sensors (E.g. IMU to camera)
- T14 Handle time delay between sensors

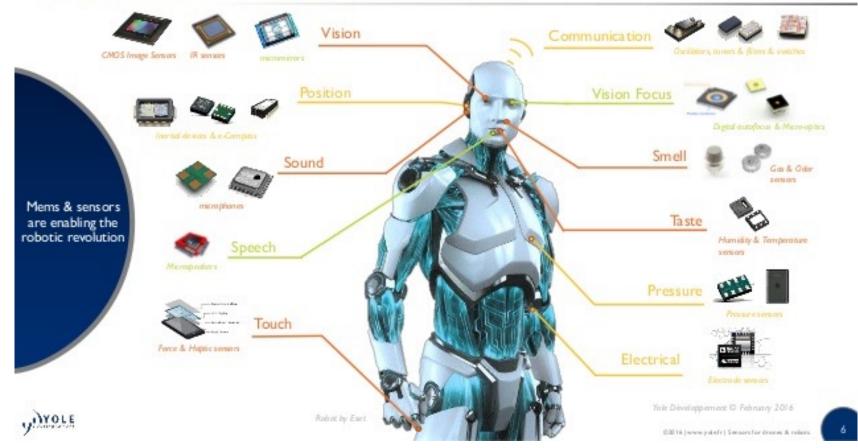
Object recognition

- For objects to be manipulated they need to be identified
- T15 Find objects in 3D point clouds
- T16 Find Objects by their appearance



Seminar - Sensors in Robotic Systems

Pure DL Skeleton Detector


Pick Topics (https://mvp.in.tum.de/link.html)

- 01 (Extended) Kalman filter
- 02 UKF & particle filters
- 03 Featureless/direct SLAM(LSDSLAM)
- 04 Feature-based SLAM (ORBSLAM)
- 05 Visual servo control
- 06 Visual maps
- 07 Tactile exploration
- 08 Tactile material classification

- 09 Event cam: Image reconstruction
- 10 Event camera: Robot control
- 11 Localization LIDAR in LIDAR
- 12 Localization Visual in LIDAR
- 13 Fusion: proprio-&exterioceptive
- 14 Fusion: Handling of time delay
- 15 Object recognition 3D
- 16 Obj. rec. Appearance-based

Thank you!

MEMS & SENSORS : BEYOND THE HUMAN SENSES...

令

- P1: <u>https://arstechnica.com/cars/2018/09/this-lidarcamera-hybrid-could-be-a-powerful-addition-to-driverless-cars/</u>
- P8: bostondynamics.com, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://mediatum.ub.tum.de/doc/1375631/1375631.pdf, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, https://www.sifsof.com/clinical-apps/simultaneous-localization-and-mapping-slam/, <a href="https://www.sifsof.com/clinical-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localization-apps/simultaneous-localiza
- P10: <u>https://habr.com/en/post/436248/</u>, <u>https://de.mathworks.com/help/fusion/ug/introduction-to-estimation-filters.html</u>
- P11: <u>https://www.youtube.com/watch?v=tP1GFapGalQ</u>, <u>https://vision.in.tum.de/research/vslam/lsdslam</u>, "Robot carthography: ROS+SLAM"
- P12: "Uncalibrated Visual Servoing" Azad Shademan et al., <u>https://sourceforge.net/projects/octomap/</u>
- P13: <u>https://dlr-alr.github.io/dlr-tactmat/</u>, <u>https://mediatum.ub.tum.de/doc/1375631/1375631.pdf</u>
- P14: "Tutorial on Event Cameras" Davide Scaramuzza,
- P15: <u>https://vrroom.buzz/vr-news/products/arvizio-optimizes-lidar-point-clouds-hololens</u>, http://www.lifelongnavigation.eu/files/caselitz16iros.pdf
- P16: <u>https://www.intellias.com/sensor-fusion-autonomous-cars-helps-avoid-deaths-road/</u>
- P17: papers T13+T14
- P19: <u>https://www.slideshare.net/Yole_Developpement/sensors-for-drones-and-robots-market-opportunities-and-technology-revolution-2016-report-by-yole-developpement</u>