
Modeling Knowledge with the Concept Hierarchy for Household Action

Recognition and Task Representation*

Andrei Costinescu1, Luis Figueredo2 and Darius Burschka1

andrei.costinescu@tum.de, figueredo@ieee.org, burschka@tum.de

Abstract— The Concept Hierarchy is a knowledge modeling
framework for representing geometric, semantic, and dynamic
scene elements in household environments. It stores necessary
information for autonomous systems to plan and reason in
indoor environments and serves typical applications thereof: en-
vironment modeling, action modeling and recognition, and task
planning. Its hierarchical structure supports generalization and
knowledge transfer to new entities thanks to the non-monotonic
modeling of concept properties. We define tasks, actions, skills,
and affordances that enable human-understandable and -
explainable household applications. We validate the framework
for action and skill recognition in human manipulation and for
verifying a correct task execution in the environment.

I. INTRODUCTION

Making sense of the world in which we humans live

is a difficult problem, more so for a robotic system, see

Figure 1. Acting intelligently and interacting with objects for

purposeful changes in environments requires knowledge of

objects, agents, actions, and skills, as well as algorithms that

use this knowledge and consider the task goal, the abilities

of the performing agent(s), and the environment in which the

task is to be performed. Ontologies [1], [2] are methods to

represent semantic knowledge of the world. A well-known

robotics ontology is knowrob [3], which includes knowledge

about executing skills. Task planning also needs knowledge

of the changes in the world to create solution plans. In the

STRIPS [4] model, actions change the state of entities. They

have preconditions to be satisfied and effects on the entities

on which they are performed.

We consider it important to model the verification of

skill execution as well in a knowledge base, which is one

of the applications of our proposed ontology: the Concept

Hierarchy (CH). Furthermore, we add knowledge about more

complex data types, called ValueDomains, and about opera-

tors that are applied to these data types, called Functions. We

also distinguish between the Actions and Skills and propose a

method to recognize the performed Skills in an environment.

The environment state, also modeled as a ValueDomain, is

the basis for defining a task. We define a task goal as a set of

valid environment configurations and present an application

for recognizing whether an environment satisfies a task.

Probabilistic learning methods for action recognition [5]

can speedily generate action hypotheses and a human-like

description or segmentation of the recognized actions in a

demonstration. Such approaches lack, however, an under-

standing of why motions ”look like” actions. A model-
*This work was supported by the Lighthouse Initiative Geriatronics by

StMWi Bayern (Project X, grant no. 5140951).
1School Of Computation, Information, and Technology at the Technical

University of Munich (TUM). 2School of Computer Science, University of
Nottingham, UK; also Associated Fellow at the MIRMI, TUM.

Fig. 1: ”How to transform the left environment into the right
one?” The CH’s knowledge enables household robots to represent
environments and to create a plan to execute tasks.

based approach enables richer uses of knowledge, such

as recognizing failures and pinpointing the reason for an

unsuccessful skill execution by modeling the physical world.

Also, a model-based approach can identify the missing steps

or needed circumstances to successfully execute a skill. A

skill model can verify whether it is truly happening in the

scene, not just if it ”looks like” the skill is executed.

II. THE KNOWLEDGE IN THE CONCEPT HIERARCHY

In every problem domain, one must quantify the state of

the environment. One must also describe how to change the

state. Finally, one must specify desired environment states,

i.e., goals. The CH models these three steps.

An Environment is the collection of all instances in it, and

an instance has a Concept and a collection of properties that

the instance’s Concept defines. The CH stores the Concepts,

whose definition contains a list of properties specified as

(p, pType). p is the property name, and pType is a Value-

Domain subconcept that represents its type, i.e. the set of

allowed property values. For example, a PhysicalEntity has

a location property defined with the Location ValueDomain,

that contains a reference Instance entity and a Pose displace-

ment to that entity’s origin. Another example is the Container

concept having contentLevel and contentVolume properties,

both represented as Number ValueDomains.

Changes to the states are represented hierarchically

as well. Functions are the highest abstraction level of

change-operators affecting all ValueDomains. Add and

Subtract are Function examples operating on two Number

ValueDomains and returning a Number as well. Compose

applied on two Poses is also a Function. On a more

specific level, Actions and Skills are change-operators that

affect only Concept properties. The difference between an

Action and a Skill is what they represent. The change of

a Concept property is represented by Actions. How the

change is executed in an environment is represented by

Skills. Actions do not know the, e.g., geometric details

and particularities or the instances whose property is



Fig. 2: Skill and Action recognition on a pouring milk into a bowl
interaction, divided into four segments. The upper part shows the
recognized Skill instances for each hand and Skill type. Colors
distinguish Skills of the same type with different properties. The
lower part shows the correspondence between Skills and Actions.

being changed. Skills do consider Instance properties as

well as the Abilities of the executing Agent(s) and the

Environment arrangement. The effects, prerequisites, and

active-checks of Skills are modeled using Functions. Actions

and Skills also have properties. E.g., the properties of the

ChangeLocation Action are (e, InstanceïPhysicalEntityð)
and (newLocation,Location). Its effects set e’s location

to newLocation. A Skill implementing ChangeLocation

is Carry, with properties (a, InstanceïAgentð),
(g, InstanceïGripperð), (e, InstanceïPhysicalEntityð),
(destination,Location), etc. Instance affordances indicate

as which action or skill properties can the instance be used.

The action affordances of an instance e is the set of pairs

A f f (e) = {(a, p) | a ∈ Actions, p ∈ E (a) , e is a subconcept

of the entity-property p of the action a}, where E (a) is

a’s entity-properties. Skill affordances are defined similarly.

Abilities, abstraction of motion primitives, are Agent-specific

change-operators at the bottom of the operator abstraction

hierarchy. Skills define behavior trees for each Agent that

specify how to chain its Abilities to perform the Skill’s

change with given Instances and in a given Environment.
Finally, for representing desired states, i.e. task goals, we

define ValueDomain-specific Variations. A Variation of a

ValueDomain is a subset of values contained in that ValueDo-

main. Thus, a task goal is an Environment Variation, a set of

allowed configurations of the Environment state. By allowing

conjunctions, disjunctions, and negations of Variations, this

Fig. 3: The image frame is green when the goal is satisfied; it
is red otherwise. In all tasks 2.*, the MilkCartonInstance m starts
with contentLevel = 0.9L. In 2.1, pouring into the cup decreases
m’s contentLevel by 0.1L, satisfying the target variation. In 2.2,
pouring from the cup adds 0.1 to m’s contentLevel, which satisfies
the goal. In 2.3, the cup’s contentVolume can not contain all 0.9L
of content from m, so the bowl is added to the scene. Once m’s
contentLevel is 0, m gets the Trash concept. When content is poured
back into m, it loses its Trash concept, making the goal unsatisfied.

is a functionally complete [6] method of specifying all

possible subsets of ValueDomains. Also using Functions,

Variations check whether a specific value is contained and,

if not, also return the reasons why a value is not contained,

highlighting the framework’s explainability.

III. APPLICATIONS

We use OpenPose [7] and AprilTags [8] to get human

hand 3D positions and object 3D poses from a Realsense

[9] camera. The Objects and Agents are recognized and

localized in each image frame, which updates their location

property. The result of the Action and Skill recognition

process is shown in Figure 2. This process updates the entity

properties based on the effects of the recognized Skills. The

Environment is checked framewise against task goals.

In Figure 3, the tasks 1.* define location goals with

conjunctions, disjunctions, and complements of Location

Variations. The following cases are presented: 1) a Liquid-

Container should be on the TableTopSurface; 2) a Bowl

should not be on the table; 3) the MilkCarton should be

to the right of the CupInstance and on to the left of

the BowlInstance; 4) a LiquidContainer should be on the

CupInstance or below the TableTopSurface. The tasks 2.*

define contentLevel goals on Containers: 1) the contentLevel

of the MilkCartonInstance is requested to be f 0.8L; 2) a

LiquidContainer should have g 1L of content; 3) a Trash

instance is requested to be in the scene. None of the entities

are Trash instances. However, the MilkCartonInstance is

a PerishableContainer instance, which defines that if the

contentLevel = 0, the instance receives the new concept of

Trash. If the conteneLevel is changed again to something

> 0, the instance loses its Trash concept.



REFERENCES

[1] E. Prestes, J. L. Carbonera, S. Rama Fiorini, V. A. M. Jorge, M. Abel,
R. Madhavan, A. Locoro, P. Goncalves, M. E. Barreto, M. Habib,
A. Chibani, S. Gérard, Y. Amirat, and C. Schlenoff, “Towards a
core ontology for robotics and automation,” Robotics and Autonomous
Systems, vol. 61, no. 11, pp. 1193–1204, 2013, ubiquitous Robotics.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889013000596

[2] J. I. Olszewska, M. Barreto, J. Bermejo-Alonso, J. Carbonera,
A. Chibani, S. Fiorini, P. Goncalves, M. Habib, A. Khamis, A. Olivares,
E. P. de Freitas, E. Prestes, S. V. Ragavan, S. Redfield, R. Sanz,
B. Spencer, and H. Li, “Ontology for autonomous robotics,” in 2017
26th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), 2017, pp. 189–194.

[3] M. Tenorth and M. Beetz, “Knowrob: A knowledge processing
infrastructure for cognition-enabled robots,” The International Journal
of Robotics Research, vol. 32, no. 5, pp. 566–590, 2013. [Online].
Available: https://doi.org/10.1177/0278364913481635

[4] R. Fikes and N. J. Nilsson, “Strips: A new approach to the application of
theorem proving to problem solving,” Artif. Intell., vol. 2, pp. 189–208,
1971. [Online]. Available: https://api.semanticscholar.org/CorpusID:
8623866

[5] Y. Kong and Y. Fu, “Human action recognition and prediction:
A survey,” International Journal of Computer Vision, vol. 130,
no. 5, pp. 1366–1401, May 2022. [Online]. Available: https:
//doi.org/10.1007/s11263-022-01594-9

[6] H. Enderton, A Mathematical Introduction to Logic. Elsevier
Science, 2001. [Online]. Available: https://books.google.de/books?id=
JO4 NVZ NqkC

[7] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh,
“Openpose: Realtime multi-person 2d pose estimation using part affinity
fields,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2019.

[8] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2011, pp. 3400–3407.

[9] L. Keselman, J. I. Woodfill, A. Grunnet-Jepsen, and A. Bhowmik, “Intel
realsense stereoscopic depth cameras,” CoRR, vol. abs/1705.05548,
2017. [Online]. Available: http://arxiv.org/abs/1705.05548


