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Abstract— We present a learning system using a human-in-
the-loop method for representing a task of daily living from a
human visual demonstration. An autonomous decision-making
algorithm, embedded with a knowledge base of action definitions,
proposes targeted modifications of the task’s parameters that
are either approved or not by a human oracle with knowledge
about the task. The system’s proposed modifications enable fast
exploration of possible variations in the execution of the observed
task. We define task descriptors that model the observed actions
and show multiple examples of how these results simplify the
deployment of the observed task on the robot through identified
variations and flexibilities in the execution of task segments.

I. INTRODUCTION

With the projected increase in elderly population [1],
elderly care facilities or personnel may not handle this
increase or properly accord the needed care for each of their
large number of patients. To address this issue, elderly care
robots have been proposed. However, the implementation
of everyday tasks on a manipulator is a tedious task that
requires expert knowledge in robotics or point-wise teaching
of trajectory points that are difficult to transfer to different
environments. In an ideal case, this programming can be
replaced by observation of the human demonstration of the
task, which would allow elderly care robots to learn tasks
directly from their patients. However the workspace of the
human is often larger than that of the manipulator, and many
of the observed motion segments result from convenience and
are not true constraints on the task. It is desirable to learn
only the necessary (essential) parts of the task execution to
give the manipulator’s planner some space for adaptations.
This simplifies the execution on the manipulator, allowing a
choice of alternative trajectories, and it simplifies the transfer
to different environments. Transfer to different environments
is a desirable feature for ”new generations” of elderly care
robots to use the already accumulated task knowledge of the
previous robot generation.

Our goal is to explore feasible deviations from the pure
imitation of the observed task. One way to do this would
be to identify possible variations from alternative execu-
tions presented by humans, but this would likely require
the observation of multiple different humans in the same
environment. An alternative approach that we want to follow
here is that the system generates possible variations from
the demonstration and asks the human (the oracle) if such
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Fig. 1. In the context of a transportation task, traversed paths are sometimes
unimportant. This feature must be verified by the system. If irrelevant, this
relaxation of the demonstrated path is remembered to allow a robot with a
different kinematic structure to complete the task in a different manner.

a change is acceptable. The goal is to limit the number
and type of questions to a minimum that will allow finding
necessary constraints without burdening the oracle too much.
In the context of elderly care, this approach has the additional
benefit of already familiarizing the patients with the robot’s
execution preference. And, since the human is the oracle
dictating whether a trajectory modification is allowed or not,
certain task parameter values may be pruned or restricted by
the person if deemed to be an unnatural execution of a task.

In this work, we focus on creating a system to visually
capture the essence of a household task in a generalizable
representation from one user demonstration of the task,
using semantic knowledge about objects and by actively
investigating allowed task freedoms not observed in the
demonstration (Fig. 1).

A. Related Work

This work is closely related to the learning by observation
paradigm. Kuniyoshi et al. [2] introduced a system to
represent a task plan and generalized it to a new environment.
Similarly, Xiong et al. [3] designed a system based on a single
video demonstration capable of performing action-imitation
generalizable to different kinematic structures. Their goal
was to learn to imitate actions, as opposed to learning their
parametrization in particular instances of a task.

In Zoliner et al. [4], a programming by demonstration
paradigm was deployed to represent tasks as sequences of
action blocks, e.g., [grasp, move, . . . , place]. The usage of
such macro operators yields a similar task instance model to
ours – however, without the exploration and exploitation of
action freedoms of the represented task proposed herein.

In [5], [6], a task is represented as a finite state machine
and is demonstrated using kinesthetic teaching. The goal



Fig. 2. The two-phase system design: one observation of a task instance is
transformed in a task representation (learning), it is used to generate multiple
task instances for different robots and in different environments (execution).

being, similar to ours, to enable non-expert users to teach a
robot new tasks. Generalization of object concepts and path
adaptation to new environments is achieved through multiple
demonstrations of the same task, contrary to our approach
which uses one visual demonstration and the information
from the knowledge base to actively ask an oracle about the
constraints and freedoms of the task.

In addition to the aforementioned literature, the works in
[7]–[9] focus on geometric contact relations between objects
to segment the task. Furthermore, the results in [10]–[13]
aim to embed a knowledge base into their system for object
representation and semantic information, such as affordances.
Finally, also connected to our work, the results in [14]–
[16] explored using a knowledge base for accessing action
templates during deployment.

We aim to extend the previous frameworks by the ability
to generalize the task and to make it transferable to new
environments. We split the task in actions with defined phases,
where the system identifies start and end constraints on the
action and explores the possible variance in the transport
motions. Our contribution is a system designed to extract
a task representation from one visual demonstration of a
task. The extracted representation is not grounded in an
environment or specific to a human or robot actor. Our goal
is to represent the allowed variation of a task so that it can
be easily transferred to a new environment. Capturing the
necessary constraints of the task and specifying its possible
relaxations should enable anyone, including a robot, execute
the task in a new environment or determine if and why the
task can not be executed.

II. APPROACH TO TASK SEGMENTATION AND
REPRESENTATION

Fig. 2 displays the process of creation and usage of a
task representation. Learning a task representation consists of
creating the model with all its parameters from a visual task
demonstration. The model is then used to create plans for
agents to execute the task in their deployment environments.

In our system, a task is a graph, where nodes are the actions
to be done in the task and the edges are time-/ordering-
dependencies between the task’s actions. An action is an
elementary change in the environment and a task causes
multiple changes in the environment. An action database
represents actions as a 3-tuple ad = (D,F,C) , where D =
(V1 ×V2 × . . .×Vn) is the product of the value domain Vi of

Fig. 3. Action instances are created from their definitions in the knowledge
base based on the observation in a demonstration, and the allowed parameter
variation is the context of a task is represented in the action variation. A
task representation is a DAG of action variations. It is used to generate task
instances. Note that any values represent the parameter’s full value domain.

each parameter of the action. The top row of Fig. 3 exemplifies
the parameters of a grasp action.

F is a set of functions defining semantic information about
the involved objects in the action. For pouring, one function
f = {sactive|sactive ∈ Ob jectSur f aces(oi),oi ∈Vi} defines the
active surfaces of the objects involved in the action: a cup’s
top surface is the active surface in pouring action containing
the cup. Information about the active surface is used by the
task representation to speed-up determining which grasps
are not allowed to execute on the object. Another semantic
function defines object affordances before and after the action.
The cup must be a container before and is no longer after
the action has been executed, assuming a full pouring action.

C is the set of (visual) check-functions that have to be
fulfilled to (visually) recognize the action. For example, one
check c∈Cpouring for a pouring task is that the from parameter
is a subconcept of Container and the into parameter is a
subconcept of Recipient. Another check is that the angle of
the pourer and poured parameters, i.e the respective surface
normal vectors of the container and recipient involved in
pouring, form an angle greater than 90◦.

An action instance ai is the tuple of parameter values
p ∈ D, p = (p1 × p2 × . . .× pn) that define the instance. The
parameters pi are fixed, allowing no variation, because
the parameters are bound to one action instantiation. Task
instances contain only action instances.

We call an action variation av =(v1 × v2 × . . .× vn) a tuple
defining for each parameter the allowed variation in its value.
Formally, ∀i : vi ∈ 2Vi . Thus, vi is the set of allowed values for
the action parameter in the context of a task representation.
Task representations contain only action variations.

Fig. 4 shows the processing pipeline from a task demon-
stration to a task representation. In a first step, the observed



Fig. 4. The processing pipeline from a demonstration to a task representation.

task, captured as a stream of RGB-D images, needs to be
segmented into elementary actions that represent changes in
the environment. We give the system the prior information
that elementary actions can be identified by changes in the
contact relations between the manipulator and structures in
the environment. This leads to a basic, sometimes incomplete
segmentation of the demonstration, which is further refined
by analysing the interactions between the manipulated object
and other objects along the manipulated path. With the help
of the oracle, the task is further split into action segments
and, with the knowledge base information, the parameters of
the identified actions of the task are filled. Fig. 3 shows at the
bottom a task instance created with the above segmentation
approach. In the next step of the pipeline, the allowed variation
of the task’s action parameters, such that the essence of the
demonstrated task is not changed, must be captured.

The allowed variation of an action’s parameters in the
context of a task is not determined through multiple demon-
strations, but by letting the system generate alternate task
instances by changing the values of the task’s action pa-
rameters and checking with an oracle whether the different
instance is still a valid task execution.

We aim to use non-expert oracles, who just know the
constraints of the task without any knowledge in robotics.
For having a normal, non-expert user interact with the system
and to reduce the number of questions necessary to learn
the task representation, we embed a knowledge base into the
system. Several data from the knowledge base, for example
object semantics and concepts, their surfaces and affordances,
coarse action definitions, visual action confirmations, and
which object concepts are participating in the action, are used
to understand faster what was demonstrated and are thus
necessary to reduce the number of questions for the oracle.

Furthermore, for targeted questions about the allowed
variations and freedoms in the task, the knowledge base
represents an action as having parameters which may vary
in the instantiation of the action. For grasping, for example,
the grasp points are an action parameter as well as the object
being grasped. For transporting, the position and orientation

Fig. 5. Transportation task instance containing an irrelevant cup interaction.

trajectory, the velocity profile, the location of the start and goal
are parameters of the action. In an action instantiation, these
variable parameters are fixed to a specific value. However,
in the action definition, i.e. what is stored in the knowledge
base, the stored information is that there are variables that are
allowed to differ in all possible instantiations of the action.

Thus, what the system does in the learning phase, is re-
trieving the task representation that the person intended, from
their demonstrated task instantiation, using the additional
knowledge of action definitions from the knowledge base, to
speed up the learning process.

In the execution phase of Fig. 2 our proposed representation
enables any robot with any kinematic structure to perform
the task in any environment or to actively determine that
the task can not be executed by the robot and which task
constraint can not be fulfilled. Furthermore, the represented
freedoms or constraint relaxations reduce the computational
burden of the planner creating the path for a robot to follow.
Knowing, for example, if a robot must exactly follow the
demonstrated positions and orientations of the manipulated
object or if only reaching the goal of the transportation action
is important greatly simplifies the planner’s work. In the case
where the position and orientation of the manipulated object
are not relevant, the planner can choose to create a simple
interpolated trajectory with collision avoidance [17], or even
the shortest or fastest path between the start and goal [18].

Knowing that there is a flexibility in the task allows the
planner to exploit it and create efficient execution plans to
complete the task’s goal.

III. EXPERIMENTS

Our experiments set out to prove that the system can
correctly segment one user demonstration into a task instance
and then extract a task representation and that a planner can
exploit the freedoms in a task representation’s constraints to
create a plan that suited for the kinematic structure of the
robot and for the deployment environment of the task.

A. Identification of Demonstrated Task Features

In one demonstration, see Fig. 5, a user intended to
show an object movement task, with no constraints on the
moved object-concept, no motion constraints, no grasping
or placement constraints. During the demonstration however,
the manipulated object entered the interaction volume of a
cup and the system registered it as a potential segmentation



Fig. 6. Pouring task instance. Snapshots are ordered by time.

point. Once asked if the cup was relevant to the task, the
user responded with ’no’, marking the cup a particularity of
the instance environment, not a feature of the task. Hence,
the system segmented the demonstration into three action
instances: grasping a milk box from the left surface, trans-
porting it from the table position A to the table position B and
placing the milk box on the bottom surface. Upon checking
all action parameters, the system correctly determined the
task representation as grasping any object from anywhere on
the object, transport the object anyhow from anywhere to
anywhere, and place the object on any surface.

In another demonstration, see Fig. 6, a user demonstrated
a pouring task from a milk box into a cup. The cup was
correctly identified by the system, and confirmed by the user,
to interact with the manipulated object, the milk box. Looking
into the knowledge base for the affordances of the cup and
the milk box, the system sees the box is a Container and the
cup is a Recipient, suggesting the possibility of a pouring
action being executed in the interaction segment. This is
confirmed by the executed motion in which the cup’s top
surface, having the concept of a PourableSurface, is facing
the milk box’s pourer surface.

Thus, the initial segmentation of the demonstration is
grasping the milk box from the back surface, transportation
from table position C to the cup’s interaction volume position
D, pouring from the milk box’s pouring surface into the cup’s
top surface using a maximal pouring height of 5.36cm, a
maximal pouring angle of 133.45◦, an approach direction of
−41.06◦ relative to the box’s coordinate frame and a pouring
time of 13.6s, followed by another transportation from the
box’s interaction volume point E to the table position F and
finally, placing the milk box on its bottom surface.

B. Executing Pouring Task

We have used CoppeliaSim [19] to simulate the execution
of the represented pouring task with a Franka robot and
have used object meshes of the milk box and of a bowl as
the objects on which to execute the pouring task. The robot

Fig. 7. Left large image shows the initial environment configuration
(different than the demonstrated environment) with the opening of the milk
box pointing to the up-right. The scanned mesh of the milk box is shown in
light blue, the bowl in dark purple, and the cup in light grey. From left to
right, first to second row, the robot executes a new pouring task instance
stemming from our task representation.

used the freedoms of the task representation to create a new
instance of the task representation which still fulfilled its
goal of pouring. A chosen freedom was the poured object
concept; it being any container instance, the robot selected
the bowl instead of the cup, which was too far away from the
static manipulator, to execute the pouring action. The next
freedom was choosing the approach direction of the pouring
action by sampling a direction angle between
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is due to the
robot’s workspace preventing the robot from performing the
pouring action. The approach direction determined the goal
position of the transportation action between the milk box
and the bowl and the path was linearly interpolated between
the start and goal whilst keeping the orientation constant
according to the specified constraint of the transportation
action. Finally, another freedom was choosing the placing
position of the milk carton to be just next to the bowl,
eliminating the need for a more complex path. Fig. 7 shows
snapshots of the robot’s task execution in simulation.

IV. CONCLUSION

This paper presented a method to represent a task from
one visual demonstration using a non-expert oracle to
explore possible task variations together with an autonomous
knowledge-based decision-making algorithm to reduce the
number of questions for the oracle – as to not burden or bore
them. To this aim, a segmentation approach creates a task
instance as a sequence of action instances – with their action
parameters filled from the knowledge base action definitions.
Full task representations are then extracted from such task
instances. Performed experiments validated our segmentation
and representation approach. Furthermore, the represented
action variation parameters enable during deployment the
creation of easier plans for different manipulators executing
the task in different environments.

Our approach can be used in the Geriatronics context to
enable elderly persons to teach their caring robot new tasks
without them having robotics or programming knowledge.
It requires a good knowledge base describing the world
and a robot planner able to take advantage of the freedoms
embedded in the task representation. Creating the knowledge
base is a challenging process, which can in the future be
eased up by learning from experience or using large language
models. Regardless, the knowledge base is a powerful tool
for speeding up the extraction of task representations. In
future work, we also plan to extend our system to address
multimodalities and to determine the representation of non-
sequential tasks, e.g. eating or drinking.
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