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Abstract— Motion detection in 3D LiDAR is crucial for
autonomous systems. While deep learning dominates Moving
Object Segmentation (MOS), the potential of learning-free ap-
proaches remains underexplored. Unlike problems like semantic
segmentation, motion can be explicitly modeled, potentially en-
abling efficient, interpretable, and computationally lightweight
solutions. Motivated by this, we introduce a novel real-time,
online, learning-free MOS method. We propose the novel Join
Count Feature to extract motion cues from a local window
of range images, and long-term filtering with efficient two-
step association to enhance accuracy. Compared to learning-
based models, we achieve superior precision and competitive
IoU for saliently moving objects on SemanticKITTI. Further
evaluation on HeLiMOS demonstrate stronger generalization
by the proposed method across different LiDAR sensors. These
results highlight the potential of learning-free methods for
motion detection in 3D LiDAR data. Code will be released
upon acceptance.

I. INTRODUCTION

With the rapid advancement of deep learning, many re-
searchers have adopted it to enhance perception modules.
Deep learning has demonstrated remarkable performance
across various tasks, but traditional approaches offer advan-
tages such as interpretability, scalability, lower computational
cost, and independence from large-scale annotated data.
Although learning-free methods are nearly infeasible for
tasks such as semantic segmentation, motion information can
be explicitly described and modeled, suggesting the potential
for motion detection without deep learning. Additionally,
learning-free methods have recently been applied success-
fully to ground segmentation [1], [2] and clustering [3], [4],
which are important tasks for systems such as autonomous
mobile robots. These systems furthermore need to reason
about the dynamic state of objects in their surroundings
to make informed and safe decisions. Inspired by these
advancements, we explore the extent to which learning-
free approaches can compete with deep learning methods
in Moving Object Segmentation (MOS).

Although learning-free methods have been widely used
in motion detection, they are often developed for different
objectives, such as tracking or static map construction, and
are not directly compared to learning-based methods for the
same task. For instance, learning-free motion detection has
been explored in moving object tracking using RANSAC-
based estimation [S5], mapless alignment [6], and particle
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Fig. 1: Overview of our proposed method. Inputs consist
of a query LiDAR scan and two reference LiDAR scans,
which we project into the range view. We cluster non-ground
objects in the query range image and determine their moving
state using the proposed Join Count Feature on depth residual
images. Objects are tracked over time to accumulate evidence
for the moving and static state using the proposed Beta Filter.

filters [7]. Meanwhile, static map reconstruction methods
incorporate motion detection to remove dynamic points [8],
[9]. While these methods are effective in their respective ap-
plications, there has been no direct comparison with learning-
based approaches for online MOS.

To investigate the potential of learning-free methods on
this task, we design an approach that efficiently leverages
visibility differences in the range view of LiDAR sensors.
We propose to estimate the moving or static state of objects
using a novel feature descriptor for depth residual images
based on Join Count Statistics [10], and to accumulate these
estimates over time using a Binary Bayes Filter for tracked
moving objects. An overview of this approach is shown in
Figure 1. Specifically, our contributions are:

o« We propose a novel real-time, online, learning-free
approach for point-wise Moving Object Segmentation.

o We evaluate our approach on the SemanticKITTI and
HeLiMOS datasets, demonstrating higher precision and
notable ToU for saliently moving objects compared to
learning-based methods while requiring significantly
less computational overhead.

o To the best of our knowledge, this is the first study to
explore learning-free methods for online MOS in 3D
LiDAR data, providing insights into their limitations as
well as potential for motion detection.
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II. RELATED WORK
A. Learning-based models for Moving Object Segmentation

Chen et al. [11] introduced the first MOS benchmark on
the SemanticKITTI dataset and proposed LMNet, the first
deep learning model for MOS. LMNet employs range view
and depth residual images to estimate moving object labels
in the range view, before re-projecting the estimates into 3D
space following Milioto et al. [12].

Since LMNet, numerous deep learning models have ad-
vanced state-of-the-art MOS performance. Mersch et al. [13]
proposed 4DMOS, leveraging sparse 4D CNNs with vox-
elized aggregated scans as input. Neng et al. [14] extended
4DMOS with InsMOS, incorporating instance labels for
additional supervision and jointly predicting object instances
and moving object segmentation. Similarly, Cheng et al. [15]
proposed MF-MOS, a dual-branch model leveraging seman-
tic labels to predict both moving and movable objects and
gain additional supervision signals.

While these models achieve strong performance on Se-
manticKITTI, their generalization to different domains and
sensor types without fine-tuning remains uncertain. To ad-
dress this, Lim er al. [16] introduced HeLiMOS, a dataset
featuring 3D LiDAR data from diverse sensors, with point-
wise moving object labels, which we also use in our exper-
iments.

B. Learning-free methods for motion detection

Although not specifically designed for MOS, learning-
free methods exist for motion detection in 3D LiDAR data.
Dewan et al. [5] employ RANSAC to iteratively sample
points, estimate motion from a scan, and assign each point
to a specific motion. Yoon et al. [6] proposed aligning two
reference scans, one before and one after the query scan,
with the query scan itself, using alignment discrepancies as
motion cues. Lee et al. [7] explicitly model object motion
states and track them using a particle filter.

Meanwhile, many learning-free methods for 3D static
map reconstruction incorporate motion detection modules.
Removert [8] builds a static map by iteratively leverag-
ing visibility differences in multi-resolution range images.
ERASOR [9] and ERASOR++ [17] use bin-wise feature
descriptors to remove dynamic points by comparing per-
scan descriptors with those of the overall map. However,
these methods are not designed for online processing, as they
require all scans at once. Nevertheless, we take inspiration
from their use of range view visibility differences for motion
detection.

More recently, Reich ef al. [18] proposed a learning-free
approach for moving object detection and tracking using
particles. Their method leverages 1D range images to localize
moving objects while employing particles for tracking. Our
approach shares similarities in ground removal, clustering,
and range view representation. However, their reliance on
1D range images limits detection to the closest objects with
planar movements, whereas our use of 2D range images
captures a more comprehensive scene representation and can
detect motion in all directions.

While these methods were developed in different con-
texts, none have been directly compared to learning-based
approaches. Reich er al. [18] evaluated their method against
CenterPoint [19], which, however, is not specifically de-
signed for moving object tracking.

C. Range view clustering methods

Range view clustering is a common technique for pro-
cessing 3D LiDAR data. Bogoslavskyi et al. [3] proposed
an angle-based range view clustering method, leveraging
the intuition that depth values change significantly at ob-
ject boundaries. Hasecke et al. [4] introduced FLIC, which
clusters range view pixels multiple times using different
connectivity strategies based on Euclidean distances. We
draw inspiration from these range view clustering methods
and use a similar algorithm in our approach.

III. METHODOLOGY

The overview of our approach is shown in Figure 1.
Our method comprises three main components: the motion
detection module, the tracklet manager, and the association
step. The motion detection module processes the input and
computes the Join Count Feature, which serves as a moving
probability estimate and helps distinguish moving objects
from the static ones. However, due to noise and pose estima-
tion errors, these predictions are prone to false positives. To
address this, we introduce tracking to smooth the probability
estimation.

We track potentially moving and the static objects sepa-
rately. To associate objects over time, we propose a Tracking-
by-Clustering approach for the static objects and employ a
computationally more expensive descriptor-based matching
only for moving objects. The tracklet manager iteratively
updates the moving probability of instance tracklets based on
these associations. Finally, point-wise moving object labels
are obtained from the point clusters associated with instances
with a high moving probability.

A. Problem Formulation

Following the common setting for MOS, we consider
a sequence of LiDAR scans & = {S( 8@ .}
along with their estimated and calibrated poses
T = {TW, T® ..}, obtained via odometry or
SLAM algorithms. Each scan consists of a point cloud
with 3D coordinates S@) = {p{?) = (27 ) ;1)) ¢ 3},
Each pose TY) € SE(3) represents a transformation from
the local to the world coordinate frame. At each time step,
three scans are used as input. The most recent scan is
denoted as the forward reference scan S, while the query
scan is the previous scan, i.e., S(9 = St The backward
reference scan, taken k steps before, is S® = S(=F)
where k is called the span of reference scans. Our goal
is to predict ](:)oint—wise moving labels for the query scan,
denoted as Y
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B. Range View Projection, Clustering, and Re-projection

To reduce computational complexity, our approach primar-
ily operates in the range view domain, leveraging LiDAR
properties. First, we detect ground points in the query
scan S@ using Patchwork++ [2], which produces ground
labels Yéggnnd e {0, 1}Np°i““ for each of the Npgints points in
the scan. Next, we transform the reference scans S® and S
into the coordinate system of S(@ and project all three scans
into range view. For each point p; in the scan, we calculate
its corresponding pixel coordinates (u;,v;) in the range view
image as follows:

ui\ |1 [1— arctan(y;, z;)7 '] W| |
vi ) Hl — (arcsin(ziri_l) + fdown) f_l] HJ M
where W and H are the width and height of the desired
range view image, 7; = \/a? + y? + 27 is the depth of the
point, and f = fy, + fgown is the vertical field of view of the
LiDAR. Each range view pixel stores the 3D coordinate and
distance to the closest point that was projected into it. After
projection, the resulting three range view images are denoted
as V@, V® and VO, Pixels with no projected points
are considered invalid and are excluded unless explicitly
mentioned.
Next, we perform range view clustering on the query
scan V(@ to obtain clusters, where pixels with Euclidean
distances below a threshold 74 form clusters. Using the

ground labels Yé?gund, we exclude pixels containing projecze)d
q
ng -

ground points, resulting in a ground-free range image V
This ensures objects are no longer connected to each other
through the ground.

To efficiently cluster the range image, we first compute
neighboring points within a fixed window size in parallel
using the 3D coordinates stored in each pixel. We then
apply the union-find algorithm, an efficient data structure that
maintains disjoint sets and supports two operations: find and
union. The find operation retrieves the representative pixel
of a set, while union merges two sets. Here, we use union-
find to merge precomputed neighbors into clusters and assign
unique object IDs, which form an object ID image Ig‘g} for
the query scan. To propagate the object IDs back to the point
cloud, we employ the re-projection of RangeNet++ [12]. A
small adaptation is introduced by not replacing the depth
values at the center row of the unfolded range image, which
corresponds to the 8-9 lines of the original re-projection
algorithm in the RangeNet++ paper. This fixes the issue that
every point receives an amplified vote from the object ID of
the pixel it is projected to, regardless of the distance between
the point and the pixel. We refer readers to the RangeNet++
paper for more details. Using re-projection, we obtain object

IDs for the query scan point cloud, denoted as Y(()gj) .

C. Join Count Feature

With object cluster regions identified in the range view,
we introduce the Join Count Feature, a novel descriptor
that converts motion cues within each cluster into a motion
probability estimate. We use differences between the query

Fig. 2: Nlustration of Join Count Feature (JCF) computation.
The first row presents depth images from three input scans,
which are compared to derive depth residuals (second row).
Using the query scan’s object ID image (third row, left), JCF
is computed within each cluster region (third row, middle).
After thresholding, objects with high JCF are considered as
potentially moving (third row, right). While the moving car
is correctly detected, some static objects are also selected,
which is addressed by the proposed temporal filtering.

and reference scans, i.e., depth residuals, as motion cues.
While depth residuals capture variations in depth, not all of
them indicate object motion. An illustration of the Join Count
Feature calculation is shown in Figure 2. In the following,
we detail the computation of depth residuals and the Join
Count Feature.

1) Depth Residuals: Let D®), D,(fé), and D® denote the
depth images, i.e., the depth channel of the range images of
the query and reference scans. The depth residuals are then
computed as discretized pixel-wise differences. For a depth
difference rf = Dﬁl“; D™, the depth residual D is
calculated as D™ = sign(r*)[|r"" | > 7], where [] is the
iverson bracket and 7y;s is a discretization threshold. This
results in residual images D® and D which can assume
the values {—1,0,1}. Positive residuals indicate points in
the query scan that are occluded by points in the reference
scans, as D%qg > D', This can occur either due to a moving
object, sensor noise or due to perspective changes from ego
motion. Negative residuals indicate points in the query scan
that occlude points in the reference scans, such that the points
in the query scan lie in the observable free space of the
reference scans, i.e. we can trace rays from the sensor to
reference scan points that intersect query scan points. This
can only occur due to a dynamic object or sensor noise. We
therefore only consider negative residuals as motion cues,
as they are a more reliable indicator and produce fewer
false positive detections due to perspective changes. Since we
consider references before and after the query scan, we can
detect objects that move radially towards and away from the
sensor, as well as objects that move laterally to the sensor. We
refer readers to Figure 3 for an illustration of depth residuals.

Only considering negative residuals results in binary depth
residual images, as shown in Figure 2, which we still denote
as D® and DO for simplicity.

2) Calculation of Join Count Feature: We now have
object cluster regions indicated by Ig‘g} and depth residual
images, namely D® and D®. Next, we seek to summarize
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Fig. 3: Illustration of depth residuals caused by radial and
lateral object motion. Moving object positions in the back-
ward, query, and forward frames are marked as 'B’, ’Q’,
and "F’. Solid and dotted lines represent query and reference
scan rays, respectively. Light blue, violet, and green dots
indicate intersection points in each frame. Negative (blue)
residuals are produced when intersection points in the query
frame occlude points in reference frames, while positive (red)
residuals occur in the opposite case. Radial motion triggers
both residuals. Only negative residuals are retained as they
correspond to points on moving objects in the query scan.

the depth residuals within each cluster region in the range
view. As shown in Figure 2, depth residuals appear grouped
together in the region of a moving object, while the reaction
caused by noise is distributed sporadically. Inspired by Join
Count Statistics [10], we propose a Join Count Feature,
which quantitatively turns the spatial aggregation pattern to a
normalized value between zero and one. Unlike simple depth
difference-based methods, our Join Count Feature captures
the spatial consistency of motion cues for each object cluster.
The statistical aggregation makes the motion detection more
robust to sensor noise. This can be observed in Figure 2,
where the depth residuals contain many noisy false positives
in the background, which are suppressed by the Join Count
Feature computation.

First, we fuse the two depth residual images using a pixel-
wise OR operation to produce D =D®vD®. we identify
if two pixels 7 and j in a cluster with ID ¢; are neighbors

as niyy = wy[I[i] == ] [IH[j] == e], with

if pixel ¢ is a direct neighbor of j 2

otherwise.

Next, we compute the one-one join counts within a cluster c;
denoted by BB,,, and all possible joins A, as

BB, = Y D[iD[jln;; and A, = > ny. 3)
4,3,i7#] ,5,17#]

We define Join Count Feature by normalizing BB, with the
number of all possible joins A, of the cluster as follows:

BB.,

Je, = :
A,

An example of the Join Count Feature calculation for a

cluster is illustrated in Figure 4. Join Count Feature J is

€1[0,1] “4)

ID image I Depth residual image D

Ac=16

BB.=7

Fig. 4: Example of the calculation of the Join Count Feature
for a cluster. Pixels belonging to the cluster are shown in
orange, depth residuals in blue. The Join Count Feature is
computed only within a cluster.

equal to one if a moving object is fully covered by depth
residuals, which happens when the object moves so fast that
its image in the range view of two consecutive scans does not
overlap at all, or when it is moving radially. J is close to zero
when the object is static and the depth residuals are result
from random noise. .J can thus be interpreted as a probability
indicating the likelihood that the object is moving.

However, the Join Count Feature alone is susceptible to
issues such as pose estimation errors and small clusters
influenced by noise, as shown in Figure 2. To mitigate
these issues, we introduce tracking and filtering, which
smooths moving probabilities and enhances motion detec-
tion accuracy. Nevertheless, the Join Count Feature remains
essential for identifying potentially moving objects, forming
the foundation for an efficient two-step association.

D. Association and Tracklet Management

To filter moving probabilities over time, we use a tracklet
manager that maintains a list of tracklets. Each tracklet stores
relevant information about the instance associated with it,
including instance IDs d; and state variables for moving
and static states. We refer to the results of instantaneous
clustering as objects {c;} and objects tracked over time
as instances {d;}. At each time step, detected objects are
associated to tracked instances. The point cloud and in-
stance IDs of the previous query scan, denoted by S@) and
YI(T?S) respectively, are stored in the tracklet manager. We
propose to employ two separate association approaches for
potentially moving and static objects to reduce the required
computational resources. For potentially moving objects
we apply a descriptor-based matching approach, which is
computationally expensive as point cloud descriptors are
calculated for each object. To track static objects, we propose
a Tracking-by-Clustering approach, which leverages the ge-
ometric consistency of static objects and is computationally
lightweight. We identify potentially moving objects {c¢; m}
as clusters in the query scan with a Join Count Feature .J,,
exceeding a threshold 7; and match them with potentially
moving instances {d;nm} stord in the tracklet manager. We
describe how potentially moving instances are identified in
Section III-E.



1) Descriptor-based Moving Instance Matching:
Using S and YI(I?;), we extract point clouds of potentially
moving instances, denoted by {Pg, n}. Similarly, we extract
point clouds of potentially moving objects from S and
Y(()gj) (obtained through re-projection in Section III-B),
denoted by {P., m}. We match these two sets of point
clouds using the Hungarian algorithm [20]. The cost
matrix used during matching is comprised of a feature
similarity cost and a Euclidean distance cost based on the
assumptions that moving instances (1) do not change their
shapes significantly, and (2) do not move far in the time
between two consecutive scans. We compare the similarity
of two 3D point clouds P,,, and P,,, using their respective
mormalized Globally Aligned Spatial Distribution (GASD)
descriptors [21], denoted by fgasd(-). The cluster similarity
is calculated as Sgaea (124, 1) Jeasd(Pn;) + foasa(Prm,)-
The Euclidean similarity based on the clus-
ter centroids 15”1,, and qu, is  calculated as
Saist(ni, m;) = exp( — ||Pn, — Pum,|l/0dist), with scale pa-
rameter ogis. The total similarity is calculated as a weighted
sum s(n;, m;) = X Sgasa(ns, mi) + (1 — ) saise(n4, m5),
with weight A\. We set the similarity to zero if the distance
exceeds a threshold 7gis;, or the GASD similarity is lower
than a threshold 7g.q4. Additionally, if the ratio between
the volumes of the bounding boxes encompassing the two
cluster point clouds is smaller than 7,,;yme, the similarity is
also set to zero. The cost matrix is then constructed as the
negative similarity of each possible pair, and the Hungarian
algorithm is used to solve the assignment problem. Only
pairs with a positive similarity are considered as valid.

While this association method works for static objects too,
we find that the computation of the GASD descriptor is
expensive and propose to instead propagate cluster IDs based
on overlapping cluster regions, which we call Tracking-by-
Clustering.

2) Tracking-by-Clustering and Label Extension: The goal
of Tracking-by-Clustering is to propagate the instance IDs of
static background from the previous query scan to the current
one, using the instance ID i 1mage and the range image of the
previous query scan, i.e., I (@) and V,(lg ), which are obtained
by projecting S(@) and YI(]C‘;5 into the range view of the query
scan.

We only label pixels containing range measurements that
do not belong to the ground or potentially moving objects. To
label a pixel in V§g>, we consider neighboring points within
a fixed-size window centered at the query pixel in V,gg).
Only points within the fixed window that have a Euclidean
distance less than 7 to the query pixel are considered. The
query pixel is then assigned the most common instance 1D
in the neighborhood. This process is illustrated in Figure 5.
Since the algorithm operates on a fixed-size window, it
can be efficiently parallelized for improved computational
performance.

During Tracking-by-Clustering, some pixels in Il(g) may
receive no votes due to viewpoint changes or the appearance
of new objects. To address this, we apply the range view

Isrc Idst

15 v

Fig. 5: Illustration of the Tracking-by-Clustering approach
for static objects. Static instance IDs of from the previous
query scan are propagated into the current one in this step.
A query pixel (denoted by ’?°) is labeled with the mode of
the projected IDs in a local Euclidean neighborhood. Pixels
in red did not receive valid projections.

clustering approach from Section III-B to the unlabeled
pixels V,(lg) and label all unlabeled pixels in a cluster with
the mode of instance IDs in the cluster. If a small group of
unlabeled pixels cannot be assigned an existing ID and forms
an independent cluster, a new instance is generated, creating
a new tracklet, as described in Sectlon III-E.

The final instance ID image IIns consists of the IDs from
the descriptor-based tracking for potentially moving objects
and the IDs of Tracking-by-Clustering for static objects, as
well as any newly created instances. After association, we re-
calculate the Join Count Feature using cluster regions from
19 instead of I, obtaining {.J,,}, for updating the state

Ins obj *
of instances.

E. Motion Evidence Accumulation

For more robust estimation of the motion state of an
instance, we propose to accumulate evidence for the instance
being in motion or static over time. We model this state
using a Beta Distribution X,;, = Beta(ay,, 84,), Where g,
represents the accumulated evidence for the instance moving
and g4, represents the accumulated evidence for the instance
being static. We assume that the motion state is constant
in small time intervals. At each time step we update the
parameters of the Beta distribution of an instance d; with
the re-calculated Join Count Feature motion probability
as agﬂ) (t) N J(t) nd Bdt+1 _ ﬁ(t) L1 J(t)-

Each tracklet also records the number of associations and
the time since its last association. A new tracklet is initially
treated as a candidate until it is tracked for longer than a birth
threshold 7. Conversely, a tracklet is removed if the time
since its last association exceeds a death threshold 7yeat.

For a new instance, we create a tracklet with a unique
instance ID d; and initialize its state variable X, as a Beta
distribution using the corresponding Join Count Feature Jg,
as Xy, ~ Beta(Jy,,1 — Jg,). For initialization, tracklets
are generated for every object. The latest moving probability
estimate for each instance is given by the mean of the Beta
distribution:

(®)

A(t t A,
Phoinsa, = B = ®
dq' d'L



After updating state variables, an instance is classified
as potentially moving if its moving probability exceeds
77. These potentially moving objects are stored for the
descriptor-based association in the next time step. If the
moving probability surpasses 7, it is classified as moving
for final point-wise prediction. Point-wise predictions are
generated by re-projecting 19 0 3D space (Section III-B)

Ins
and labeling all points belonging to moving instances.

IV. EXPERIMENTS AND ANALYSIS

All experiments are conducted on the open datasets Se-
manticKITTI [22] and HeLiMOS [16]. Both provide man-
vally annotated moving labels, with SemanticKITTI addi-
tionally offering instance labels. Since our approach relies
on reference scans, the first and last scans of each sequence
cannot serve as query scans. Therefore, predictions for these
scans are set to all static.

A. Parameter settings and evaluation metrics

The parameter values for our approach are set as follows:
k=2 W =1024, H = 64, fy, = 2.0, fgown = —24.8,
T7a = 0.7, Tyis = 0.5, 77 = Tin = 0.4, Toirhn = 3, Tdeath = 2,
A =04, T = 8, Tgasd = 0.8, Tvolume = 0.5, ogise = 2,
7rec = 0.5. The window size is five for re-projection and
Tracking-by-Clustering, and nine for range view clustering.

For evaluation, we follow the benchmark by
Chen et al. [11] and use IoU, precision, and recall of
moving points.

B. Moving Object Segmentation in SemanticKITTI

As suggested by many learning-free motion detection
methods [6], [5], [18], a condition for detectable moving ob-
jects is necessary, as these approaches rely solely on motion
cues rather than semantic information. Motion cues, in turn,
are influenced by motion saliency. We find that the moving
object labels in SemanticKITTI label all objects that move at
any point during a sequence as moving in the all frames of
the sequence. This is inaccurate, as temporarily static objects,
such as a car at a traffic light, are also labeled as moving.
Leveraging instance labels from SemanticKITTI, we re-label
the dataset, only labeling objects with translations exceeding
the minimum translation threshold 7;; between consecutive
frames as moving. Since 7y;s represents the minimum depth
residual difference, objects labeled as moving in the original
dataset with smaller translations are ignored during metric
computation.

To evaluate our approach, we compare it against three
representative learning-based models: LMNet [11], Ins-
MOS [14], and MF-MOS [15]. LMNet pioneered deep
learning for MOS, establishing the benchmark. MF-MOS is
the current state-of-the-art open-source model, ranking first,
followed by InsMOS. For each model, we adopt the best-
performing configuration reported in the original papers. The
results are summarized in Table 1.

Despite being a learning-free approach, our method out-
performs state-of-the-art deep learning models in precision

Method Rec. Prec. ToU GPU Mem. Time
LMNet[11] 0.929 0.706  0.669 0.96 GB 16 ms
InsMOS[14] 0961 0.631 0.616 2.93 GB 75 ms
ME-MOS[15] 0.967 0.784 0.764 21.32 GB 77 ms
Ours 0.831 0.861 0.733 0.68 GB 78 ms

TABLE I: Performance comparison with three learning-
based approaches to MOS on the SemanticKITTI validation
set. Our learning-free approach is slightly less sensitive
to moving objects but also less prone to predicting false
positives, yielding a competitive IoU score.

and achieves the second-best IoU, highlighting its effi-
ciency given the significantly lower computational overhead.
However, deep learning models excel in recall, where our
approach falls short. We attribute this to only few depth
residuals being generated at the boundary of slowly moving
objects when considering consecutive LiDAR frames, which
leads to a weaker response of the Join Count Feature. Further
potential reasons are a loss of peripheral target points caused
by conservative ground removal, range-view clustering, and
fixed-window-based re-projection. Another factor is the Beta
Filter’s birth mechanism, which retains moving predictions
for tracklet candidates. When association is interrupted, a
new birth threshold period must pass before the moving in-
stance is re-established. This suggests a promising direction
for improving recall performance.

C. Performance per Min. Translation Analysis

To further examine the impact of motion saliency, we
analyze the performance of our approach and the three
deep learning models across different minimum translation
thresholds ;s . Since learning-based models may overfit the
training set and no instance labels are publicly available for
the test set, this analysis is conducted on the SemanticKITTI
validation set. A zero translation threshold corresponds to the
original labeling scheme. The results are shown in Figure 6.

As expected, the recall of our approach increases sig-
nificantly with the minimum translation threshold, reaching
a level comparable to learning-based methods once the
threshold exceeds 0.6 m. Interestingly, recall also initially
improves for deep learning models, suggesting that detecting
objects with small translations is a universal challenge, not
limited to learning-free methods. This highlights a potential
improvement direction for all approaches.

Apart from the original scheme, our approach consis-
tently outperforms deep learning models in precision. Con-
sequently, our IoU surpasses deep learning models when the
minimum translation threshold exceeds 0.6 m, indicating that
our method is more robust to motion saliency and achieves
better performance when motion cues are more reliable.
An interesting observation is that precision decreases for
all methods as the threshold increases, likely due to the
rising influence of false positives as more moving objects
are filtered out.

For a comprehensive evaluation, we also assess our ap-
proach on all sequences with available instance labels, in-
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Fig. 6: Performance comparison across different minimum translation thresholds on the SemanticKITTI validation set. Our
approach still struggles to detect slow moving objects as they do not cause large enough depth residuals, but we match and
exceed the performance of learning-based methods for faster objects. This indicates that learning-free methods may be a
viable alternative to deep learning models for the task of MOS, albeit further work to improve the recall is required.

Method Aeva Avia Ouster Velodyne Avg.

Rec. Prec. ToU Rec. Prec. ToU Rec. Prec. ToU Rec. Prec. IoU Rec Prec. IoU
LMNet[11] 0.683 0.064 0.063 |0.591 0349 0.281 | 0.854 0.058 0.057 |0.228 0.229 0.129 | 0.717 0.067 0.065
InsMOS[14] | 0.969 0.032 0.032 | 0.844 0.059 0.059 |0.951 0.034 0.034 |0.844 0.055 0.054 |0.937 0.036 0.036
MF-MOS[15] | 0.719 0.223  0.206 |0.754 0.503 0432 | 0516 0.601 0.384 | 0.371 0.262 0.182 | 0.611 0332 0.274
Ours 0.342 0922 0333 | 0275 0722 0.249 | 0.548 0.847 0.498 | 0.134 0.826 0.130 | 0411 0.855 0.384

TABLE II: Performance comparison on the HeLiMOS validation containing LiDAR sensors outside the training domain of
deep learning methods. LMNet and InsMOS predict large amounts of false positives on most sensors, shown by their high
recall but very low precision. MF-MOS achieves a better balance, but is still outperformed by our approach on overall ToU.
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Fig. 7: Performance comparison of our approach across dif-
ferent minimum translation thresholds on the SemanticKITTI
training and validation sets. On this more diverse data split
we achieve a higher performance than just on the validation
split in Figure 6, especially for slow moving objects

cluding the training and the validation sets. As shown in
Figure 7, the results follow a similar trend: recall increases
with the minimum translation threshold, while precision
remains consistently high. The IoU aligns with previous
findings, peaking at 0.787 when the threshold is 0.5 m.

D. Moving Object Segmentation in HeLiMOS

We further evaluate our approach on the recently released
HeLiMOS dataset [16], which presents greater challenges
due to its diverse LiDAR sensors, including omnidirectional
(Velodyne VLP-16, Ouster OS2-128) and solid-state (Livox
Avia, Aeva Aeries II) types. For evaluation, we extract

validation scans and form them into three consecutive sub-
sequences. However, HeLiMOS lacks instance labels and
contains numerous pedestrians. To partially compensate,
we increase the reference scan span k to nine, allowing
query scans to be compared with earlier backward reference
scans, enhancing motion cues. All other parameters remain
unchanged. For reference, we also evaluate the three deep
learning models on HeLiMOS without re-training. The re-
sults are shown in Table II.

The results align with previous experiments on Se-
manticKITTI, where deep learning methods excel in recall.
However, all of the learning-based approaches, but especially
LMNet and InsMOS, have very low precision, because they
produce a large amount of false positive estimations. MF-
MOS demonstrates better generalization compared to LMNet
and InsMOS. Our approach on the other hand is more
conservative and achieves very high precision, albeit a lower
recall due to the afforementioned issues of slowly moving
objects. Nonetheless, our method attains the highest IoU on
two sensor types and on average, demonstrating the universal
effectiveness of motion cue aggregation and filtering.

E. Computational Efficiency

Statistics regarding the computational efficiency are col-
lected by running inference on the SemanticKITTI validation
set using a single Nvidia RTX 6000 Ada GPU and a single
core of an AMD Ryzen Threadripper PRO 5965WX CPU
(3.8 GHz). Our approach achieves an average runtime of 78
ms per time step, covering all stages from range view projec-
tion to point-wise moving label prediction, ensuring real-time



processing. Additionally, our method requires significantly
less GPU memory, as shown in Table I, demonstrating its
excellent computational efficiency.

V. CONCLUSIONS

In this paper, we propose a novel learning-free, real-
time online approach for MOS. Leveraging the proposed
Join Count Feature and two-step association for filtering,
our method efficiently and accurately detects saliently mov-
ing objects. Experiments demonstrate that despite signifi-
cantly lower computational overhead, our approach outper-
forms state-of-the-art deep learning models in precision and
achieves competitive IoU for saliently moving objects. Eval-
uation on the HeLiMOS dataset further confirms its universal
effectiveness and the sensitivity of learning-based approaches
to shifts in the input domain. Our findings provide strong
evidence that well-designed learning-free approaches still
hold great potential in motion detection. Moving forward,
we aim to enhance recall, particularly for slower-moving
objects, by incorporating adaptive filters and integrating
explicit motion models to further refine motion detection
accuracy.
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