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Abstract— A representative and accurate environment model
is essential for the safe navigation and operation of intelligent
transportation systems, such as autonomous vehicles and mobile
robots. This paper presents a semantic occupancy grid mapping
approach that uses a particle-based map representation to
approximate continuous dynamic environments. The proposed
approach recursively updates occupancy, velocity and semantic
class estimates using the Bayesian Generalized Kernel Inference
(BGKI) framework to maintain a local occupancy map in real
time. The novelty of this approach lies in its combination of the
continuous static semantic mapping capabilities of BGKI with
the recursive dynamic state estimation of Dynamic Occupancy
Grid Maps (DOGMs) in the 3D domain. We demonstrate that
the approach maintains the semantic mapping capabilities of
BGKI while providing more accurate velocity estimates than
previous particle-based three dimensional DOGMs on real and
simulated automeotive datasets, including Semantic KITTI. We
show that our approach outperforms the current state of the
art on both semantic mapping and velocity estimation.

I. INTRODUCTION

Intelligent transportation systems such as autonomous
vehicles or mobile robots often operate in dynamic environ-
ments and must be able to perceive and navigate in them.
An accurate, uncertainty aware model of the surrounding
world is needed to achieve safe operation. Occupancy Grid
Maps (OGMs) are a popular map representation to address
these tasks, because they explicitly model free, occupied and
unknown space, and can represent arbitrarily shaped objects.

Recently, two-dimensional (2D) Dynamic Occupancy Grid
Maps (DOGMs) [1], [2] have been extended to the three-
dimensional (3D) domain [3], [4], [5]. One prevalent feature
of these approaches is the use of particles to estimate
velocity. Moreover, Chen et al. [3] propose to use particles as
an approximation of a continuous dynamic occupancy map
instead of discrete grids.

With advances in deep learning, the integration of richer
information, such as semantic classes, into 3D OGMs has
been pursued [6], [7], where the use of Bayesian Generalized
Kernel Inference (BGKI) [8], [9] is popular due to its spatial
smoothing and continuous map update properties.

However, the integration of semantic information has this
far been restricted to static OGMs. Some works [10], [11]
have used explicit scene flow estimation to propagate the
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Fig. 1: Semantic dynamic occupancy estimations generated
by our method on Semantic KITTI sequence 04. Velocity
estimates are indicated by colored lines.

semantic information of these maps over time, but they
miss one defining feature of DOGMs, namely a recursively
updated velocity estimation that is maintained in the map.

This motivates us to combine the dynamic mapping ca-
pabilities of particle-based DOGMs with the rich features
of semantic OGMs. We base our work on DSP-Map [3],
to produce a continuous dynamic semantic occupancy map
as shown in Figure [II We notice several limitations of
DSP-Map, which we explore in Section [[l] and propose to
integrate its particle map structure with the BGKI framework
to overcome them.

Our formulation generalizes semantic BGKI to dynamic
scenes and can be reduced to static semantic BGKI [6]
and binary occupancy mapping with BGKI [8] by imposing
certain constraints, as described in Section [[T[-B]

Our main contributions are:

e« We extend DSP-Map to aggregate information from
sparse LiDAR scans over longer time horizons in a
continuous particle map.

o Using this adaptation of DSP-Map, we generalize the
semantic BGKI framework to dynamic scenes without
the use of explicit scene flow information.

o We evaluate the semantic mapping capability, as well
as the velocity estimation accuracy of our approach on
real and synthetic datasets.

The remainder of this work is structured as follows:
Section reviews current DOGMs and semantic map-
ping OGMs in the 3D domain. We briefly outline the
shortcomings of the state of the art, represented by DSP-Map
on sparse LiDAR data and then introduce our proposed inte-
gration and generalization of the semantic BGKI framework
in Section [[Tl} Section [[V] presents and discusses quantitative
and qualitative experimental results. Section |[V|concludes the
paper and offers potential future research directions.
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II. RELATED WORK
A. Bayesian Generalized Kernel Inference occupancy maps

Occupancy mapping using BGKI was first introduced by
Doherty et al. [8], [9] to circumvent discretizing measure-
ments. Votes for free space or occupied space from sur-
rounding measurements are aggregated using nonparametric
bayesian inference [12] with a sparse kernel function. The
map represents occupancy at a location as a beta distribution,
the parameters of which represent evidence for occupied and
free space. This evidence is usually gathered from range
sensors that implicitly measure free space as rays cast from
the sensor origin to each measurement point.

Gan et al. [6] proposed to extend BGKI to semantic
mapping by employing Dirichlet distributions to accumulate
evidence for each semantic class. Wilson et al. [7] extended
this approach further by learning differently shaped kernels
for different semantic classes.

As static semantic mapping approaches do not account for
dynamic objects, Kochanov et al. [10] propose to use scene
flow estimated by a neural network to propagate aggregated
information in the map between time steps, which was
extended to the BGKI framework by Unnikrishnan et al. [11].

While such approaches propagate information over time,
they are dependent on the quality of the estimated scene
flow. Since scene flow is commonly estimated using neural
networks, this adds computational complexity and requires
training data from the target domain. In contrast, we recur-
sively update a velocity state including uncertainty in the
map representation of BGKI without requiring scene flow.

B. Dynamic 3D occupancy mapping

Occupancy mapping in dynamic environments has been
well studied for 2D DOGMs [1], [2], [13], [14], where
particle representations show prevailing success in mod-
eling the dynamic environment. However, the transfer of
these methods to the 3D domain is challenging due to the
higher dimensionality of the state space. Min et al. [4]
have proposed K3DOM, which adds a layer of particles to
estimate velocities in a voxel map built by binary BGKI,
where dynamic objects are determined heuristically, which
is extended to Dempster Shafer theory by Han et al. [5]. In
contrast, our approach maintains a unified, continuous parti-
cle map without discretization, where each particle contains
information about occupancy, velocity, and a distribution
over semantic classes.

More recently, DSP-Map [3] proposed to approximate a
continuous dynamic occupancy map using weighted parti-
cles without explicit voxel representation. Particles are only
generated near sensor measurements and their velocity is
initialized through cluster matching. A voxel map at arbitrary
resolution can be derived from the aggregated weights of
particles in each voxel. To facilitate updates of this map, the
field of view of the sensor is partitioned in spherical space
to produce the so called pyramid subspace.

Our work extends DSP-Map in the following ways: 1.
We apply concepts of BGKI to the state update of particles,

which resolves problems related to sparse measurements and
allows us to retain information over longer periods of time.
2. We use this improved longevity of particles to integrate
semantic class information into the map which allows us to
focus dynamic particles on movable areas in the map.

III. CONTINUOUS SEMANTIC OCCUPANCY MAPPING
WITH PARTICLES

In this section, we describe our extension of DSP-Map.
Our goal is to build a vehicle centric DOGM which models
the occupancy, semantic classes and velocities of the envi-
ronment. Our online approach maintains a local map around
the vehicle and is not used for global mapping.

In their work, Chen et al. [3] primarily test their ap-
proach using depth cameras to update the particle map. We
observe that while the maps produced by DSP-Map using
such sensors model the dynamic environment well, they
lack persistence for sparse LIDAR measurements. Especially
at longer distances, the sparsity of LiDAR scans leads to
prematurely discarded particles when the vehicle moves. This
occurs because the particle weights are reduced too much
before they are confirmed by new measurements, which
erases already mapped areas behind the vehicle. Figure
illustrates this effect and compares the results of DSP-Map
and our approach on data from the automotive domain.

We validate this observation by analyzing the particle
age of our approach and DSP-Map on the Semantic KITTI
validation set, where we find that particles of our approach
survive 55% longer on average. We furthermore find that for
DSP-Map on average 24% of particles in the map are newly
born at each iteration, while it is only 8% for our approach.

The transient nature of the particles of DSP-Map prevents
the aggregation of information over longer time horizons
from sparse measurements and motivates us to propose a
BGKI based particle update mechanism, which builds on the
map representation of DSP-Map.

A. Problem Formulation

We infer the dynamic semantic  occupancy
map from a sequence of measurements, where a
measurement X' = {S' C'} at time ¢ consists
of a 3D point cloud S* := {si,..,s§} with N
points s! € R?® and N associated semantic
estimates over Ns categories C! := {c!,...cl}
with ¢! € RNes. A semantic estimate ¢! is a multinomial
distribution with ZkNgi ¢ir = 1. We assume a known
transformation from world coordinates w to sensor
coordinates | given by T , € SE(3) with rotational
component R, ; € SO(3).

Our goal is to estimate a probability distribu-
tion p(wt vl|x,t, X%, .. X)), for a sequence of
measurements from time ¢y to ¢. The modeled state at
a point x at time ¢ is given by a semantic occupancy
state w’ and a velocity v’. The semantic occupancy of the
map at location z is modeled by w' = {wf,...,wh  },
where w represents free space and wi,...,wf — represent
different semantic categories.
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Fig. 2: Map persistence comparison between DSP-Map
and our approach after 50 frames on Semantic KITTI se-
quence 04. Highlighted in red: sparse LIDAR measurements
cause increasing gaps behind the vehicle for DSP-Map, while
our approach produces a more consistent, closed surface. The
vehicle is driving towards right, the map is shown in birds
eye view. Colors indicate the height of a grid cell.

B. Particle Map Representation

We represent a dynamic occupancy map using a set of
particles P, where each particle p; represents a semantic
occupancy hypothesis with N5 possible semantic classes.
The particle state is parameterized by a position x; € R3, a
velocity v; € R3 and a Dirichlet distribution Dir(cx) defined
by vector ¢ € RNeis+1 with parameters a; > 0. The parame-
ters of the Dirichlet distribution represent observed evidence
for each possible class, which includes the N s semantic
classes, as well as one class representing free space, which
we denote by «. The evidence accumulated in a particle
for class agnostic occupancy is the sum of the accumulated
evidence for all semantic classes agee = 22]21 Q.

This particle-based representation allows for a flexible
transfer of the map between coordinate systems, including
the transfer from cartesian to spherical coordinates. The
representation reduces to static semantic BGKI as introduced
by Gan et al. [6] if the particles are sampled in a regular grid
pattern with zero velocity, and to the original binary BGKI
formulation [8] if only one semantic class is considered.

C. Map Prediction

At each time step At from t to ¢t + 1, we predict the
state of the particle map using a linear motion model with
ego motion compensation. The relative ego motion of the

sensor is given by Tf = (T.H)™'T! ;. The map is
then propagated as: x!™' = TP(x! + VIAL) + e,
and vit' = RA'v! + €, with additive process noise of

the position €, ~ N(0,X,) and velocity €, ~ N(0,X,)
of particles. Under the assumption that a particle tracks a
semantically consistent object in the scene, we do not use
semantic process noise, therefore the Dirichlet distribution
of the particle remains unchanged between two time steps.

D. Particle Map Update

In the following we describe how the particle map is
updated with a new measurement X*. For compactness,
we will omit ¢ in our notation from here on. Since the
Dirichlet distribution is a conjugate prior to the multinomial
distribution, the class estimates can be used to update the
parameters of the current particles in the map in closed form.

To reduce computational complexity we subsample the input
point cloud using mean voxel downsampling.
We employ BGKI with the sparse kernel proposed by
Doherty et al. [8]
o (“#(2)(1 4yt ;sm(zw%)) d<l
K(d) = "
0 d>1

to update the semantic and free space evidence of particles.
Here d is the euclidean distance between a map particle and
a measurement point, [ defines the maximum range in which
measurement points contribute information to the particle,
and o¢p € R determines the magnitude of the update. In the
following we separately consider the update of the free space
parameter «g and the semantic parameters o, ..., an,,, .

To update the semantic parameters of a particle p;, the se-
mantic evidence of each measurement point is weighted with
the sparse kernel function to produce the update of the distri-
bution parameters as Aay; = Zjvzl K(dp,s;)cj, i > 0.
Since the sparse kernel is zero for most measurement points,
it is sufficient to consider only those points that lie within
the distance [ to the particle p;. The free space parameter
update Aaqg cannot directly be calculated from the 3D point
cloud, as free space measurements are implicitly given by
rays traced between the sensor origin and the points of the
observed point cloud. Commonly, free space measurement
points are sampled along these rays [8], [11], [6], and the
nearest point to the query point, in our case a particle, is
used as a measurement. As these sampling methods only
approximate the true measurement ray, we follow the method
proposed by Doherty et al. [9] and directly calculate the
distance between a particle p; at position x; and normalized
ray r; = H:;%z\l cast from the sensor origin o to measure-
ment point s;. Since the ray terminates at s;, the distance
between a ray r; and particles that are farther from the
sensor than s; is calculated as the euclidean distance between
the particle and the point. Thus, the distance between a
particle p; and ray r; is calculated as

g = X oy flxl] < Iyl
Pir; —
T Ui = sl [l > [[s;]1;
where (-, ) is the scalar product and || - || is the euclidean
norm. Therefore, the free space measurement update for
particle p; is calculated as Aag; = Z;\Ll K(dp, r;)-

Unlike Doherty et al. [9], who use sampled points which link
to the respective rays they were sampled from, we employ
the pyramid structure proposed by Chen et al. [3]. As shown
in Figure 3] this partitioning scheme can be used to limit the
search space for rays and points to neighboring pyramids.
We consider a sufficient number of neighboring pyramids to
cover the radius of the kernel up to a minimum measurement
distance s,,i, to the sensor.

LiDAR data is frequently provided as point clouds where
invalid laser returns are filtered out and not as raw range
images. This prevents ray casting for free space measure-
ments in regions of the field of view without a returned
laser measurement, as no measurement points are provided.
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Fig. 3: Pyramid space partitioning for the particle update. A
2D slice of the 3D partition is shown. Particles are updated
using measurement points and free space rays cast from
sensor origin o that lie within the range [ of the particle,
as well as the free space prior «, if no measurements are
in a pyramid. The search space for these samples can be
reduced to nearby pyramids.

One way to address this issue is to fill the missing mea-
surements with rays cast to infinity, which requires exact
specification for different LIiDAR models. Instead, we ad-
dress this issue more generally by imposing a prior free
space measurement probability ¢y, for each empty pyramid
that is in the field of view of the LiDAR. The free space
parameter o of a particle that lies in such a pyramid, e.g.
the green particle in Figure [3]is calculated using the rays of
points from neighboring pyramids and the free space prior
as Aag; = Zjvzl K(dp,r;) + ap.

The particle updates can be efficiently calculated on a
GPU, where we parallelize the computation with a kernel
that launches a block per pyramid to calculate the free space
and semantic update for all particles in the pyramid.

E. Occupancy Calculation and Map Queries

We query a semantic map in two different ways once it is
constructed. A finite volume may be queried, which can be
used to construct a conventional voxel representation of the
map. For a volume element V, the semantic occupancy state
is determined by the evidence of all particles contained in it.
The occupancy state is represented by the Dirichlet distribu-
tion with parameters ay = Nv Zz 1 Op,, Which is the mean
Dirichlet distribution of all Ny particles p; € V. The velocity
estimate for the volume element is similarly calculated, but
weighted by the occupancy probability pocci = %0:07;%

as vy = p Zz 1 Pocc,iVp; with P, = vazvl Pocc,i-
For an occupled cell, the probability of being dynamic is
calculated analogously to the Dempster Shafer approach
presented in DSP-Map, but instead of the summed particle
weights, the summed evidence for occupancy is considered.

The semantic map can also be queried using a point in
3D space through interpolation between nearby particles.
To this end, we can also employ BGKI on the mapped
particles to gather the evidence from the map in a lo-
cal area. The estimated semantic occupancy at point x
is calculated as ax = ZZ\; K(dp, x)op,. The velocity
estimate of the point is similarly calculated to that of

the volume element as vy = P% Zfil K(dp, x)Pocc.iVp;
with Py = SN K (dp, x)Pocei-

Both query methods result in a Dirichlet distribution for
semantic occupancy. The variance of this distribution can
provide an estimate of the uncertainty of the predicted state.
However, for an occupied cell classified as an occupied
category w;, the variance value does not distinguish be-
tween uncertainty whether the cell is occupied or not, and
the uncertainty of what category the cell is occupied by.
Therefore, we propose to consider two separate variances,
the occupancy variance, which provides information about
the uncertainty of whether a region is occupied, as well
as semantic variance for occupied regions, which repre-
sents the uncertainty over which semantic class occupies
the region. To calculate the occupancy variance, we con-
sider aoe. and g, which form a beta distribution with
varanee Varlooee] = o St

The semantic variance of an occupied query is the variance
of the Dirichlet distribution Dir(ay, ..., an,,, ) over the se-
mantic parameters of the queried Dirichlet distribution, with-
out the free space evidence ag. Thus, the semantic variance

is expressed by Var|w;] = %(177_5“1) with @; = -

Qoce

F. Particle Management

Our approach maintains a local map of particles around the
vehicle. At each iteration, all particles within update range
of the sensor measurements are updated. The update range is
determined by the field of view of the sensor and the range
of the sparse kernel function.

A particle representation of the map offers a high degree
of flexibility in the allocation of processing to certain areas
of the map. To minimize processing requirements, it is
advantageous to keep the number of particles as small as
possible. This is achieved by initializing static particles
across the map with a uniform prior distribution of high
variance Qtprior, to represent unknown space. Each iteration,
particles outside the map bounds are discarded and particles
are initialized in newly developed areas of the map. Particles
are sampled around measurement points to focus processing
on interesting regions. We follow a similar approach to DSP-
Map and initialize the velocity of particles using clustering
and Hungarian matching between consecutive LiDAR scans.
However, to improve the quality of matches we only consider
points classified as movable classes, such as pedestrians and
vehicles for clustering and matching. While this generally
prevents the generation of dynamic particles for static ob-
jects, it also makes the velocity estimation prone to errors of
the semantic segmentation network. Therefore, similarly to
DSP-Map, we also initialize particles with randomly sampled
velocities for all measurement points. Particles are initialized
with the same semantic class distribution as the LiDAR scan
point they originate from.

To further reduce computational load, we discard parti-
cles with low occupancy probability a“j:ao < €gcc. This
means that free space is implicitly modeled by an absence
of particles, which improves efficiency significantly, since
usually free space comprises most of a scene. Furthermore,



TABLE 1
COMPARISON OF SEMANTIC MAPPING PERFORMANCE ON THE SEMANTIC KITTI VALIDATION AND TEST SET.

z 2 3 E
s 2 = 2 3 =
S s 7 - » 3 O 2 £ 5
Split Method 2] & @& = & 5 g & = = & & 5 A 2 2 & & £ & E
Segmentation [15] | v/ | 91.0 250 47.1 407 255 452 629 00 038 465 819 02 858 542 842 529 727 532 400 | 528
SBKI(02)[7) | v | 926 303 553 431 250 519 699 00 936 468 819 0.1 87.9 575 860 598 740 600 432 | 557
Val. | SBKI.1)[6] |« | 935 335 573 445 272 529 721 00 944 496 840 00 887 596 869 625 753 636 451 | 574
ConvBKI [7] V| 940 375 600 333 405 594 744 00 933 490 812 0.1 885 595 868 622 750 599 465 | 580
Ours X | 928 262 533 496 257 526 757 00 934 466 818 0.1 877 593 857 589 741 597 409 | 56.0
Segmentation [15] | v/ | 824 260 346 216 183 67 27 05 OI8 650 751 277 874 586 805 551 G648 479 550 | 475
SBKI0.2) [7] | v | 840 285 399 252 197 79 33 00 923 675 765 285 891 615 823 616 665 553 644 | 502
Test | S-BKIO.)[6] | « | 838 306 430 260 196 85 34 00 926 653 774 300 897 637 834 643 674 586 67.1 | 513
ConvBKI [7] v | 838 322 438 208 232 83 31 00 0914 626 752 275 891 616 816 625 652 539 630 | 504
Ours X | 930 240 367 300 263 437 477 50 922 673 760 284 895 623 823 608 669 547 610 | 552

-

(b) Frame 1292

(a) Frame 1291

(c) Frame 1293

Fig. 4: Segmentation estimates for the person category on
three consecutive frames in sequence 16 of Semantic KITTI.
Red: both Rangenet++ and our approach predict the person
class, green: only Rangenet++ predicts person, blue: only
our map predicts person. Our map is able to propagate
semantic evidence for moving objects between frames using
the velocity estimates, which compensates for noisy and
inaccurate estimates by Rangenet++, while suppressing false
positives on the ground due to accumulated evidence.

this prevents a conflict of dynamic objects moving into free
space, where accumulated free space evidence may prevent
the map state from changing to occupied. This is not a
problem if free space is modeled by an absence of particles,
as new particles can be generated around measurements. In
ambiguous areas, such as near object boundaries, particles
still collect evidence for both occupancy and free space.

Dynamic objects with changing velocity pose a challenge
for our approach. Particles that track a dynamic object will
accumulate increasing evidence for occupancy. If the velocity
of the object changes, for example due to braking or turning,
the linear motion model will cause the particle to move
past the object boundary, usually into free or unobserved
space. To address this, we decay the evidence of dynamic
particles which do not receive an update to .. larger
than a threshold Acgcc,min OVer time as a(’iyn = YQdyn
with v € [0,1]. This keeps the mean of the Dirichlet
distribution, while increasing its variance and facilitates a
faster state change in observed free space and a reversion to
the unknown uniform prior in unobserved space.

IV. EXPERIMENTS AND RESULTS

We validate our approach by evaluating the accuracy of the
estimated semantic class estimates and the velocity estimate
of our approach against state of the art semantic mapping
and DOGM methods.

A. Semantic Mapping

We evaluate the semantic mapping accuracy of our ap-
proach on Semantic KITTI [16], an automotive dataset
consisting of 22 Sequences with semantic segmentation
annotations in 3D for each LiDAR scan. We follow a
similar evaluation methodology as Gan et al. [6] and Wilson
et al. [7] and classify points of each LiDAR scan using our
local semantic occupancy grid map. We use the semantic
class predictions of Rangenet++ [15] and the sensor poses
provided in the Semantic KITTI dataset as the input to our
grid. Points that lie outside of the grid map bounds are
classified using the estimates of Rangenet++. We maintain
a local map with bounds [-50, -50, -2.6] to [50, 50, 2.6] m
along the (X,Y,Z) axes of the LiDAR sensor and use a
downsampling resolution of 0.2 m for the input point cloud.
For estimating the semantic class of query points we use the
point query approach described in Section [[lI-'E] We compare
our approach with ConvBKI [7], as well as S-BKI [6] at
two resolutions; the originally reported 0.1 m and the 0.2 m
resolution reported by Wilson et al. [7]. For evaluation on the
test set, we submit our results to the official evaluation server.
These results are reported in Table [ While ConvBKI and S-
BKI first construct a map using all scans in the sequence and
then query this map, our approach is evaluated online without
information from future measurements. Our approach runs in
real time with 32 ms/scan on an Nvidia RTX 6000 Ada GPU,
where S-BKI reports an inference time of 1670 ms/scan.

Despite not using data from future scans, we surpass
the mapping performance of S-BKI with a voxel resolu-
tion of 0.2 m on the validation set based on the mean
IoU. Compared to the input semantic segmentation by
Rangenet++ [15], our approach improves the semantic seg-
mentation of all categories except for road and sidewalk,
where we report slightly decreased performance. We attribute
this to the downsampling of the input point cloud, as even
the global map by ConvBKI [7] with learned, class specific
kernels shows lower performance on these categories while
also downsampling the point cloud.

On the test set, we significantly outperform the static
semantic mapping approaches. The largest improvements
over the baselines appear on moving categories such as
persons. We find that our approach effectively propagates
accumulated evidence for dynamic objects between frames,
as illustrated in Figure [l Our dynamic map maintains the



TABLE 11
RMSE OF VELOCITY ESTIMATES ON CARLASC (VAL).

Scenario Class Match  DSP-Map [3]  Ours
Light Person 0.44 0.37 0.19
Car 0.75 0.83 0.58

Medium Person 0.44 0.49 0.18
Car 0.64 1.11 0.62

Heavy Person 0.63 0.76 0.49
Car 0.65 1.07 0.65

correct classification of the shoulders and heads of two
walking pedestrians based on prior collected evidence, while
Rangenet++ misclassifies them. Static mapping methods are
unable to compensate the misclassifications of Rangenet++,
because the object motion prevents the accumulation of
evidence in a static voxel.

B. Velocity Estimation

To evaluate the accuracy of the velocity estimation of our
approach we use the synthetic CarlaSC dataset [17], because
Semantic KITTI does not contain velocity ground truth
information. CarlaSC contains LiDAR scans with pointwise
semantic class and scene flow annotations.

The dataset contains two dynamic categories, persons
and vehicles. To evaluate our approach, we use the ground
truth class annotations to segment the LiDAR scan at each
time frame. We obtain object instances by first segmenting
the scan by class and then clustering each segment with
DBScan [18]. The ground truth velocity of each cluster is
calculated as the average scene flow of the cluster.

To evaluate our velocity estimates, we similarly segment
the particle map using the current estimates of class prob-
abilities and calculate the mean velocity for each cluster.
These clusters are matched with the ground truth clusters
using Hungarian matching based on the position of cluster
centers. We evaluate the velocity estimates using the Root
Mean Square Error (RMSE) for each movable category.

We compare our approach to the Hungarian matching
described in Section [[II-F used to initialize the particle
velocities and DSP-Map, which represents the state of the
art of velocity estimation in dynamic 3D occupancy grids.
For a fair comparison, we modify DSP-Map to also contain
and update semantic class labels in each particle and cluster
them analogously to our approach. Both the modified DSP-
Map and our approach receive the same input. We evaluate
on the validation set of CarlaSC, which consists of three
scenarios with light, medium, and heavy traffic densities,
respectively.

The results of our quantitative evaluation are presented in
Table [ We observe that our approach improves the accuracy
of the estimated velocities for both categories, although the
improvements lessen in more densely populated scenes and
are less substantial for the Car category than for the Person
category. There are two reasons for this. Firstly, as cars are
larger in volume, particles with an erroneous velocity can
persist and be confirmed by measurements for several time
steps before moving past the object boundary. This problem
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Fig. 5: Estimated velocity by Hungarian matching, DSP-Map
and our approach for a turning pedestrian in CarlaSC.

also motivated Chen et al. [3] to initialize velocities using
cluster matching. Secondly, cars pass each other more fre-
quently than pedestrians, especially in the populated scenes
of CarlaSC, which allows particles to transfer between object
instances without being depleted.

We also compare our approach to DSP-Map and find that
outside of the person category in the Light scenario, DSP-
Map does not offer improvements and often worsens the
initial velocity estimates. To gain more insight into this, we
plot the velocity estimates in X and Y direction for a turning
pedestrian in the Light Sequence in Figure [5] We observe
that both DSP-Map and our approach offer a smoothing of
the noisy Hungarian Matching initialization, but DSP-Map
is more sensitive to changes in the initialization velocity.
Due to the perfect scene flow annotations in the synthetic
data, variations in the ground truth velocity from the walking
pattern can be observed. DSP-Map tracks these patterns more
closely, but at the cost of an overall higher degree of noise.
Our approach does not closely track these patterns, but still
follows the overall trend of the ground truth velocity closely.

The higher degree of noise in DSP-Map has a negative
effect in more populated scenarios, because of more fre-
quent occlusions and interfering particles. We visualize the
difference in quality between our approach and DSP-Map
in a scenario where two pedestrians closely pass each other
in Figure [6] Our approach clearly distinguishes the individ-
uals, and accurately estimates their velocities, while DSP-
Map predicts almost static objects. The oncoming pedestrian
(right) leaves a particle trail in the occluded area behind
them, which can cause further particle interference. This
occurs because DSP-Map does not update occluded particles
past a certain distance to maintain consistent static elements
in the map. Our approach is able to avoid such trails by
decaying particles of movable categories in unobserved space
quickly, while maintaining immovable categories.

C. Variance estimation

As described in Section [II-E] we calculate both the oc-
cupancy variance and the semantic variance separately. The



(a) DSP-Map (b) Ours

Fig. 6: Estimate by DSP-Map and our approach of two
pedestrians walking past each other in opposite directions
in CarlaSC. The velocity estimates of DSP-Map reduce to
almost zero, as noisy particles with low weight interfere
with one another. A trail of particles is left in the occluded
space behind the right pedestrian. Our approach maintains
an accurate velocity estimate without trailing particles, due
to rapidly decaying particles past the object boundary.

benefit of this distinction is shown in Figure [7] Occupancy
variance tends to be larger at the boundaries to free or
unknown space. Semantic variance is high in semantically
ambiguous areas and at class boundaries.

V. CONCLUSION

This paper presented a unification of BGKI and DOGMs
to produce a local semantic dynamic 3D occupancy grid map
that is recursively updated. Experimental results on real and
simulated data show that our method produces occupancy
maps that are more persistent for static objects and estimate
the velocity of dynamic objects more accurately than the
current state of the art on sparse LiDAR data, without relying
on prior scene flow estimation.

The constant velocity assumption limits the tracking capa-
bilities of the current approach and requires re-initialization
of particles to track changing velocities. Promising areas
for future research include updating the velocity of particles
using sensor measurements and integrating panoptic segmen-
tation to further enrich the dynamic map.

N
Aa; = Y K(dp,s,)cj, i > 0
j=1
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