
LiDAR Ground Segmentation with Gaussian Mixture Models

Felix Neumann1, Frederik Deroo1, Georg von Wichert1, and Darius Burschka2

Abstract— Accurate ground segmentation is an important
perception task, not only for estimating drivable surfaces,
but also as a precursor for tasks such as object clustering
or dynamic object segmentation and tracking in autonomous
vehicles. Model-based methods have made substantial progress
on this problem in recent times, but place their focus on
generating a model of the ground, while modeling non-ground
objects is not emphasized. However, modeling such objects can
provide important additional information as evidence for non-
ground points. We propose a Gaussian Mixture Model-based
environment model to estimate the likelihood that local regions
belong to the ground or non-ground objects, which can be
queried at arbitrary positions in space. Additionally, we extend
this approach to fuse information from multiple past sensor
frames for more accurate ground estimation. We experimentally
validate our approach on the SemanticKITTI dataset, where
notably our single-frame configuration outperforms state-of-
the-art multi-frame methods.

I. INTRODUCTION

Autonomous transportation systems and autonomous mo-
bile robots are gaining increasing relevance with advances
in sensor technologies and processing capabilities. Such
systems need to build an internal model of their surroundings
to navigate safely and avoid collisions. Ground segmentation
is a crucial task for building such models to, for example,
determine drivable areas and as a precursor for object clus-
tering [1], [2] and dynamic object detection and tracking [3].

While current approaches to ground segmentation have
shown compelling performance, they are mostly focused
on modeling the ground through local planes [4], [5] and
elevation grids [6], [7]. These methods emphasize the model
of the ground, but do not fully build models of non-ground
objects, rather treating them as outlier points to the model
of the ground. Points are then classified as ground if they lie
within the boundaries of the ground model, which are often
set as a fixed threshold, and as non-ground if they lie outside
them. However, modeling both the ground and non-ground
objects allows for a clear definition of segmentation bound-
aries between the two classes, and is therefore beneficial for
accurate ground segmentation. Furthermore, heuristics-based
methods often only supply a binary classification label and
do not reason about uncertainty, which is crucial in safety-
oriented systems. Finally, few approaches fully leverage the
temporal persistence of the ground and only use single sensor
frames, which can lead to inaccuracies in areas with sparse
sensor measurements.
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Fig. 1. Overview of our approach. An input scan (1) is first segmented
according to the concentric zone model from Patchwork++ [4] (2). A 3D
Gaussian Mixture Model (GMM) is fitted to the points in each segment (3)
and used to identify outlier points below the lowest fitted Gaussian (4).
The likelihood of each Gaussian to represent ground (red) and non-ground
(green) is calculated using the three criteria described in Section III-C. The
most likely class per Gaussian is visualized (5). Finally, the fitted model is
queried with 3D points (for example the input scan) and a predicted ground
state for each point is produced (6).

To address these issues, we propose the use of generative
modeling in the form of Gaussian Mixture Models (GMMs)
to estimate a continuous probability distribution that models
the likelihood of a point in 3D space belonging to ground or
non-ground objects. Specifically, our contributions are:

• We propose a probabilistic, parallelizable ground seg-
mentation approach that is based on modeling range
sensor point clouds as a collection of GMMs.

• Furthermore, we propose a multi-frame sensor fusion
strategy that consistently improves performance over
single-frame inference.

• We evaluate our approach on SemanticKITTI and
demonstrate that it outperforms existing state-of-the-
art (SotA) methods on the task of ground segmentation
using both individual sensor frames and multiple se-
quential frames. Notably, our single scan configuration
outperforms prior multi-frame methods.

II. RELATED WORK

A. Gaussian Mixture Models for 3D Point Clouds

Recently, approximating 3D point cloud data using
GMMs has gained interest in the domains of mapping
and localization. However, the computational cost of fitting
GMMs using classical approaches such as the Expectation-
Maximization (EM) algorithm pose a challenge. Normal Dis-
tributions Transforms (NDTs) [8], [9] approximate GMMs
by augmenting voxel-based representations with Gaussian
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representations. A Gaussian distribution is fitted to measure-
ment points falling into each voxel to build a 3D map, which
can be used for localization of autonomous systems [10].
NDTs only approximate a full GMM, as fitting a GMM
to large point clouds using EM is computationally expen-
sive. Eckart et al. [11] address this issue by proposing a
parallelized, hierarchical formulation of GMMs (HGMMs),
which builds a tree of small GMMs using EM in real
time by leveraging the computational power of modern
Graphics Processing Units (GPUs). Their approach was
later applied to real-time registration of LiDAR scans in
outdoor scenarios [12]. Li et al. [13] propose a memory
efficient approach to approximately fitting GMMs to depth
images based on heuristics without iterative optimization
and use this representation to iteratively build a GMM
occupancy map [14]. We take inspiration from NDTs and
Eckart et al. [11] in our approach by approximating LiDAR
scans using a collection of small GMMs that are distributed
across discrete segments of the environment, where we
optimize the parameters of the GMMs in a parallelized
manner on the GPU. This approach strikes a balance between
NDTs and HGMMs. NDTs offer complete control on how
Gaussians are distributed throughout 3D space and are very
computationally efficient, but are limited to modeling the
data as a single Gaussian per voxel. HGMMs, on the other
hand, adapt to the data distribution, but are computationally
more expensive and offer little control over the distribution of
Gaussians in 3D space. Our approach takes the best of both
worlds and offers control over how GMMs are distributed
in space, while leveraging the adaptability of each GMM
to local data. The computational complexity of our method
is equivalent to a single hierarchy level in HGMMs, thus
making it cheaper and faster to compute than HGMMs.

B. Model-based Ground Segmentation

Classical approaches to ground segmentation have been of
interest for autonomous vehicles, with successful approaches
being applied during the 2007 DARPA Urban Challenge.
Himmelsbach et al. [15] propose an efficient line-fitting
based approach to ground segmentation. Similar approaches
have been used in applications such as object clustering [1]
and dynamic object detection [3] to remove the ground as
a precursor task. Shen et al. [16] coarsely classify ground
points based on an elevation metric, followed by a smoothing
of the class estimates in the range image of the sensor.
Lim et al. [4] propose Patchwork, which segments the point
cloud according to a concentric zone model in polar coordi-
nates, estimates a local ground plane in each segment based
on principal component analysis (PCA) of measurement
points and classifies whether the plane represents the ground
based on a set of thresholds. Lee et al. [5] extend this work
to Patchwork++, which introduces robust filtering of outlier
points and an adaptive estimation of the parameters used to
classify ground points. Steinke et al. [7] propose to incre-
mentally build an elevation map based on the assumption that
the vertical distribution of points belonging to the ground is
narrow in local grid cells. We take a similar approach to

the works of Patchwork and Patchwork++ by splitting the
point cloud into segments in polar coordinates, but instead
of modeling only the ground, we model both ground and
non-ground objects using GMMs in each segment. We fur-
thermore exploit the temporal aspect of ground segmentation
introduced by GroundGrid by proposing an efficient query
method to fuse information from multiple sequential GMMs.

C. Learning-based Ground Segmentation

With the recent successes of deep learning in perception
tasks, several learning-based approaches to ground segmen-
tation have been introduced. Velas et al. [17] propose a
lightweight convolutional neural network (CNN) that oper-
ates in the range view of a range sensor. Paigwar et al. [6]
propose GndNet, which estimates the ground elevation in
a 2D grid map based on an input point cloud using a
2D CNN, followed by a conditional random field. Points
are classified based on the difference of elevation to the
estimated elevation map. He et al. [18] employ a combination
of CNNs on a polar discretization of the point cloud in Birds-
Eye-View (BEV) and PointNet [19] to encode point clouds
the BEV representation. Each polar sector is then classified
as ground or non-ground and points are labeled based on the
sector they fall into. While not specifically tuned to ground
segmentation, LiDAR semantic segmentation methods such
as 2DPass [20] can also be applied to the task of ground
segmentation without retraining, by mapping the semantic
classes they were trained on to the classes of ground and
non-ground. We show that our model-based approach out-
performs domain-specific deep learning methods.

III. APPROACH

Our approach consists of the following processing steps,
which are also illustrated in Figure 1 and will be described
in more detail in this section:

1) Fit a collection of GMMs to an input point cloud.
2) Identify outlier points based on the GMMs.
3) Estimate the likelihood of each Gaussian to represent

ground or non-ground.
4) Calculate the ground probability of query points from

the model.
This query based approach can be extended to fuse the
information contained in multiple GMMs from sequential
sensor measurements to improve the accuracy of the esti-
mated ground points.

A. Problem Formulation

Given a 3D point cloud S := {s1, ..., sN} consisting
of N points si ∈ R3, we aim to estimate the probability
that a point belongs to the ground or other non-ground
objects for each query point. Thus, given a set of query
points, our method produces an estimated probability vec-
tor p̂g := {p̂g,1, ..., p̂g,N} consisting of point probabili-
ties p̂g,i ∈ [0, 1]. This probability can be used to determine
the set of ground points Sg and non-ground points S¬g

based on a threshold τg as Sg = {si ∈ S|p̂g,i ≥ τg}
and S¬g = {si ∈ S|p̂g,i < τg}.



B. Gaussian Mixture Model Representation

Point clouds produced by range sensors suffer from issues
such as noise and varying sparsity, which makes inferring
abstract information about each point directly difficult. To
address these issues, we approximate the distribution of
points in a point cloud using a mixture of 3D Gaussians. This
representation summarizes characteristics of local sections of
the environment within each 3D Gaussian, which allows us
to estimate the ground state of the segment based on the
parameters of the fitted Gaussian.

The EM algorithm is commonly used to optimize the
parameters of the Gaussian distributions in a GMM to
approximate a set of data points. However, directly fitting
a GMM with sufficient capacity to large point clouds in real
time is intractable, since the complexity of EM for a GMM
is O(NK) for a point cloud with N points and a GMM
with K Gaussian components. While hierarchical GMMs
have been proposed and have been shown to be real time
capable when implemented on GPUs, they offer little control
over the distribution of Gaussian components in the scene.
This leads to areas with high point sparsity to be represented
by few, large Gaussians, which are not representative enough
to determine local features. Inspired by Patchwork [4] and
Patchwork++ [5], we therefore first segment the point cloud
in polar coordinates using the concentric zone model pro-
posed by Lim et al. [4], resulting in B point subsets Sb

where S = ∪B
b=1Sb. We then fit a Gaussian mixture model

with a maximum of Kmax components to the points in each
segment. Each component c of the GMM in segment b
of the concentric zone model consists of a weight πb,c, a
mean µb,c ∈ R3 and a covariance Σb,c ∈ R3×3.

1) GMM Initialization: We find that using all Kmax

Gaussians in sparsely populated segments can sometimes
lead to an oversegmentation of points, resulting in noisy
Gaussians that are unsuited for ground estimation. Therefore,
we initialize one Gaussian per Nmin points in a segment
of the concentric zone model, up to a maximum of Kmax

components. Thus, the number of initialized Gaussians Kb in
a segment b is given by Kb = min(⌈ Nb

Nmin
⌉,Kmax) for Nb

points in the segment. The means of the Kb components are
initialized with the mean of the points Sb in the segment
in the horizontal plane (e.g., the x- and y-axes in common
LiDAR coordinate systems) and are distributed linearly be-
tween the minimum and maximum heights of points in Sb.
The weight of each component c in the segment is initialized
as πb,c = 1

Kb
and the covariance is set to a unit covariance

matrix.
2) GMM Optimization: We employ Expectation Maxi-

mization to optimize the parameters of the initialized Gaus-
sians. EM iteratively optimizes the parameters of the Gaus-
sian components with alternating expectation and maximiza-
tion steps. During the expectation step, the likelihood γb,c,i
between each measurement point sb,i in a segment and each
Gaussian component in that segment is given by:

γb,c,i =
πb,cp(sb,i|πb,c,µb,c,Σb,c)∑Kb

c=1 πb,cp(sb,i|πb,c,µb,c,Σb,c)
,

where p(sb,i|πb,c,µb,c,Σb,c) is the probability density of the
Gaussian component c at point sb,i. During the maximization
step, the likelihood is maximized with respect to the param-
eters of the GMM components, which are updated in closed
form as:

π′
b,c =

∑
i

γb,c,i
Nb

µ′
b,c =

∑
i γb,c,isb,i∑
i γb,c,i

Σ′
b,c =

∑
i γb,c,isb,is

⊤
b,i∑

i γb,c,i
− µ′

b,cµ
′⊤
b,c.

At every iteration, we calculate how many points are assigned
to each Gaussian component, i.e., for how many points a
Gaussian is the component with the highest likelihood γb,c,i.
Gaussians that are assigned fewer than τN points are re-
moved to avoid oversegmentation.

C. Ground Likelihood of Gaussians

Once the GMMs of each segment are fitted to the point
cloud, each component represents a local subset of points
and approximates their distribution in space. We estimate
the probability that a Gaussian represents ground or non-
ground objects based on three assumptions related to the
shape, orientation and elevation of the ground. For all
three assumptions we employ a parameterizable likelihood
function of the form:

p(x, α, β) = 1− 1

1 + e−α(x−β)
.

This is an inverted sigmoid function of input x with slope α
and offset β. We choose this function as it allows us to
map unbounded properties of the Gaussian components to
representative probabilities that indicate evidence for the
ground and non-ground classes. Furthermore, we can define
an uncertain transition region in the function and high con-
fidence regions that are robust to outliers where the function
saturates based on the manually defined parameters α and β.
To choose suitable values, we recommend to set β to a
threshold below which the components in the GMM tend
to represent ground segments. Then, α should be tuned such
that p(x, α, β) evaluates to a sufficiently high value at x = 0.
We use p(0, α, β) > 0.9 in our parameter tuning. A higher
value for β will lead to higher estimated likelihoods and thus
a higher recall and possibly lower precision.

1) Ground Shape: Generally, we assume local sections of
ground to be smooth and flat. This should be reflected by a
Gaussian that represents a local set of ground points, where
the variance of the Gaussian is low in at least one direction.
We calculate the likelihood that a Gaussian is part of the
ground based on its flatness as pg,λ = p(λmin, αλ, βλ),
where λmin is the smallest eigenvalue of the covariance
matrix. This causes a high ground probability for Gaussians
that are sufficiently flat in at least one direction.



2) Ground Orientation: The second assumption we make
about ground components is that they are oriented close to
parallel to a horizontal plane. To assess this, we estimate the
ground probability based on the angle θ = arccos(vmin ·nz)
between the eigenvector vmin corresponding to λmin and
the vertical axis nz (e.g., the z axis in common LiDAR
coordinates) as pg,θ = p(θ, αθ, βθ). This assigns a high
ground probability to Gaussians whose larger principal com-
ponents are close to parallel to the horizontal plane in sensor
coordinates. While this constraint could hinder the detection
of upwards sloping ground, we find that in practice we can
set this parameter large enough to cover gradients up to 45
degrees without compromising on accuracy.

3) Ground Elevation: Unlike Patchwork [4] and Patch-
work++ [5], we make no assumption about the mounting
height of the sensor, but assume that ground sections are
located near the measurement points with the smallest el-
evation in their respective segment. Therefore, we assume
that the means of Gaussians that represent ground sec-
tions have an elevation that is close to the lowest points
within a segment b. We calculate this elevation distance
as e = µb,c · nz − min(Sb,e), where µb,c ·nz is the vertical
elevation of the mean of the Gaussian and Sb,e is the set of
elevations of all points in a segment. We calculate the ground
likelihood based on the elevation as pg,e = p(e, αe, βe),
which yields a high probability for Gaussian means close to
the minimum points and a low probability for Gaussians with
large elevations above the minimum measurement points.

The three likelihoods pg,λ, pg,θ and pg,e serve as indicators
whether a Gaussian likely represents the ground, and are used
to determine the overall likelihood of a query point belonging
to the ground, as described in Section III-E.

D. Outlier Removal using GMMs

One issue with using the above criteria with real point
cloud data are LiDAR beams that reflect off of multiple
objects. This tends to happen when reflective objects, such
as cars, are close to the LiDAR where the beam intensity
is high, which results in perceived points that lie beneath
the ground. This causes a low ground probability w.r.t eleva-
tion pg,e, which results in false negative point classifications.
To address this issue, we use the fitted Gaussian components
to filter outlier points in a segment before calculating the
minimum elevation of points in that segment.

As there are only few outlier points generally, and we
remove Gaussians supported by fewer than τN points, out-
liers should not be represented well by the GMM. Therefore,
we classify points where sb,e − min( µb,e) < τo as outlier
points and exclude them from the point elevation set Sb,e

to assess the ground probability with respect to elevation.
However, in proximity to the sensor, it is possible that enough
outlier points exist to be assigned a Gaussian component.
We filter these out by adaptively estimating the sensor height
above the ground and not considering Gaussians that lie well
below the sensor height in polar segments close to the sensor.
For this, we maintain a moving average of the elevation of
Gaussians with high ground likelihood in each segment in the

first zone of the concentric zone model [4] over consecutive
sensor frames. We calculate the mean z̄s and standard devia-
tion σz,s of the moving averages in each segment and exclude
Gaussians that lie below z̄s − 3σz,s from the Gaussians
considered during outlier point removal in polar segments in
the first zone. We choose three standard deviations, because
the expected fraction of elevation samples that lies outside
this range is less than one percent. This minimizes the risk
of incorrectly filtering an actual ground Gaussian from the
calculation of the minimum ground elevation.

E. Gaussian Mixture Model Query

Once the GMMs in each segment are fitted to the point
cloud data and the ground probabilities are calculated ac-
cording to the likelihood functions described in Section III-
C, the model represents a continuous probability distribution
over the measurements and the ground likelihood in each
segment. This model can be queried with a set of 3D
query points Sq to yield a ground likelihood of each point.
To estimate the class of a query point, we identify which
segment of the concentric zone model it falls into to select
the respective GMM. Next, the association likelihood γb,c,i
between a query point sq,b,i and the Gaussian components
in a segment are calculated. For readability, we omit the
segment index b for the notation of the following calculation.
These association likelihoods are then used to form weighted
sums of the three ground likelihoods of each Gaussian for
the point as pg,λ,i =

∑
c γc,ipg,λ,c, pg,θ,i =

∑
c γc,ipg,θ,c,

and pg,e,i =
∑

c γc,ipg,e,c. The overall predicted probability
that the query point belongs to the ground is then given by the
product of these three likelihoods as p̂g,i = pg,λ,ipg,θ,ipg,e,i.

F. Multi Frame Query

Since the information about the environment is limited
within a single scan of the sensor, we propose an efficient
multi-frame query method that can be used to estimate the
ground likelihood for a point based on the GMMs from
multiple frames. However, for this we additionally require
the pose T f ∈ SE(3) of the sensor in world coordinates at
which sensor frame f was observed. We maintain a buffer of
the last Nf GMMs, of the ground likelihoods pfg,λ,c, pfg,θ,c,
and pfg,e,c for each Gaussian component within them, and
of the poses associated with the GMMs. Given a set of
query points Sf

q relative to the sensor pose T f
q , we query

all available GMMs in the stored buffer. To this end, we
begin by projecting the query points into the sensor frames
of the stored GMMs using the buffered poses and the query
pose. After projecting the points, we identify the segment of
the concentric zone model of the past frames that each point
falls into. The likelihood of each point is then estimated from
the Gaussians of all segments that the respective query point
falls into in each of the past frames. Thus, the association
likelihood γb,c,i is calculated not only for the Gaussians of
a single segment b but for the segments that the point falls



into in each buffered frame f , thus forming:

γf
b,c,i =

πf
b,cp(s

f
q,b,i|π

f
b,c,µ

f
b,c,Σ

f
b,c)∑Nf

f=1

∑Kb

c=1 π
f
b,cp(s

f
q,b,i|π

f
b,c,µ

f
b,c,Σ

f
b,c)

.

Omitting the segment index b again in the following, the
three ground likelihoods are then calculated analogously
as pg,λ,i =

∑
f

∑
c γ

f
c,ip

f
g,λ,c for the ground likelihood w.r.t

flatness, pg,θ,i =
∑

f

∑
c γ

f
c,ip

f
g,θ,c for the likelihood w.r.t.

the ground orientation, and pg,e,i =
∑

f

∑
c γ

f
c,ip

f
g,e,c for

the likelihood w.r.t elevation. The final point likelihood p̂g,i
is calculated as described in Section III-E.

IV. EXPERIMENTS

In this section, we outline the evaluation protocol for our
proposed approach and analyze its performance compared to
other SotA ground segmentation approaches.

A. Evaluation Setting

We use the SemanticKITTI dataset [21] to evaluate our
approach in an urban autonomous driving context. To gener-
ate the ground truth ground labels, we follow the evaluation
methodology of Lee et al. [5] and Steinke et al. [7] to
label points belonging to the road, sidewalk, lane marking,
parking, terrain, and other ground as ground points. The
labels unlabeled, outlier and vegetation are ignored during
the evaluation, as the vegetation class contains a large variety
of objects that cannot conclusively be assigned to ground
or non-ground objects. All remaining labels are considered
as non-ground objects. For multi-frame ground segmenta-
tion, we use sensor poses estimated by KISS-ICP [22]. We
evaluate our approach against SotA learning- and model-
based approaches using the precision, recall, Intersection
over Union (IoU), F1 score, and accuracy metrics.

B. Implementation Details

We implement our approach on the GPU using Py-
torch [23] and Triton [24]. We set the maximum number of
Gaussians per segment as Kmax = 8 where we initialize
one Gaussian per Nmin = 20 points in a segment. The
threshold for removing a Gaussian with insufficient support
is set to τN = 10. The parameters of the likelihood functions
are empirically set to αλ = 40, βλ = 0.06, αθ = αe = 4,
and βθ = βe = 0.8. The outlier threshold is chosen to
be τo = 0.5, and the threshold for classifying ground points
based on the estimated ground probability is set to τg = 0.5.
We determine these values empirically on the validation set
of SemanticKITTI (Seq. 08).

C. Comparison on SemanticKITTI

We compare our approach to GndNet [6], 2DPass [20],
Patchwork++ [5] and Groundgrid [7], as they respectively
represent a learning-based ground segmentation approach,
a SotA LiDAR semantic segmentation approach, a single-
frame model-based approach and a multi-frame model-based
approach to ground segmentation. We report the quantitative
results in Table I, where we show that our approach out-
performs the current SotA in terms of precision, F1 score,

(a) Patchwork++ (b) Ours (single frame)

Fig. 2. Comparison between our approach and Patchwork++. True positive
ground detections are shown in green, true negatives in blue, false positives
in red, and false negatives in yellow. Our approach successfully classifies the
uneven ground next to the road, while Patchwork++ produces false negative
detections, including misclassifying an entire patch of ground on the road
behind the car (blue box). Our approach also produces fewer false positives
at the bottom of the wall on the left (red box).

accuracy and IoU, while reaching a nearly identical recall.
While we report the performance on the entire publically
available dataset, it should be noted that the deep-learning
approaches GndNet and 2DPass were trained on some of the
sequences. Therefore, we mark results that contain training
samples with parentheses where the dataset split is known
and exclude these values from the assessment of best and
second best performance. The results show that our single
frame configuration not only outperforms the learning-based
and model-based single scan approaches of GndNet and
Patchwork++ by a significant margin, but also achieves
higher performance than the multi-frame approach taken by
GroundGrid, albeit at a small difference. Extending our ap-
proach to multiple frames consistently improves every metric
across all sequences, and achieves the best performance on
every sequence in terms of F1 score, Accuracy and IoU.

Overall, our approach achieves higher precision than oth-
ers, while reaching a similar recall. These metrics support our
claim that modeling non-ground objects is beneficial to the
task of ground segmentation, as our method produces fewer
false positive estimates, where object points are classified as
ground points. The high recall of GndNet likely originates
from some evaluation sequences being included in the train-
ing data of the approach, but the exact train-validation split
was not reported by the authors. Compared to 2DPass, our
method achieves a higher recall and slightly lower precision
on the validation set of 2DPass (Seq. 08). Even though
the deep learning methods were evaluated on their training
sequences, our multi-frame approach outperforms them in
almost every metric, without requiring training and while
being much more computationally efficient. Our approach
overall offers the best balance between precision and recall,
as shown by the IoU, F1 score and accuracy metrics. A
qualitative comparison between our single-frame approach
and Patchwork++ [5] is shown in Figure 2, where our method
is more robust to uneven ground, and more accurate at the
transition from objects to the ground.

We demonstrate the effectiveness of our multi-frame query
approach in Table II, where we show that including ad-
ditional past frames to estimate the ground state of query
points consistently improves the F1 score, accuracy and IoU



TABLE I
COMPARISON OF OUR PROPOSED APPROACH TO SOTA GROUND SEGMENTATION METHODS ON SEQUENCE 00-10 OF THE SEMANTICKITTI DATASET.
BEST PERFORMANCE IS HIGHLIGHTED IN BOLD, SECOND BEST PERFORMANCE IS UNDERLINED. RESULTS OF DEEP-LEARNING METHODS ON KNOWN

TRAINING DATA ARE PROVIDED IN PARENTHESES AND NOT CONSIDERED FOR BEST PERFORMANCE.

Method Multi-
frame

Seq
00

Seq
01

Seq
02

Seq
03

Seq
04

Seq
05

Seq
06

Seq
07

Seq
08

Seq
09

Seq
10

Mean

Precision
GndNet ✗ 92.40 96.54 93.74 95.60 97.30 89.58 96.15 90.09 95.09 93.81 88.34 93.51
2DPass ✗ (99.25) (98.92) (99.30) (99.59) (99.51) (98.78) (99.15) (99.09) 99.44 (98.97) (98.54) (99.14)
Patchwork++ ✗ 94.99 98.27 95.96 96.81 98.18 92.65 97.86 93.29 97.03 96.06 92.81 95.81
GroundGrid ✓ 96.05 98.01 97.36 97.96 99.08 95.19 97.82 95.31 97.25 97.25 95.38 96.97
Ours ✗ 97.82 96.57 98.68 99.29 99.29 97.04 98.44 97.52 98.47 98.19 96.99 98.03
Ours ✓ 98.61 97.34 99.02 99.56 99.48 98.00 98.79 98.41 99.00 98.60 97.98 98.61

Recall
GndNet ✗ 99.50 96.91 96.94 96.68 99.06 98.69 99.00 99.44 98.74 96.14 93.60 97.70
2DPass ✗ (98.13) (96.84) (97.48) (97.60) (97.40) (96.92) (98.23) (97.53) 95.38 (96.10) (95.47) (97.01)
Patchwork++ ✗ 98.67 96.52 97.20 98.17 97.21 98.13 97.39 98.42 97.35 96.45 95.93 97.40
GroundGrid ✓ 98.70 96.17 97.71 97.95 97.85 98.13 98.38 98.72 97.79 96.91 95.90 97.66
Ours ✗ 97.44 96.18 96.31 98.15 98.22 96.86 97.67 97.26 96.95 96.04 95.02 96.92
Ours ✓ 98.15 98.05 97.00 98.80 98.63 97.49 98.02 98.04 97.62 96.69 96.09 97.69

F1 score
GndNet ✗ 95.82 96.72 95.31 96.14 98.17 93.91 97.55 94.53 96.88 94.96 90.89 95.53
2DPass ✗ (98.69) (97.86) (98.38) (98.59) (98.45) (97.84) (98.69) (98.30) 97.37 (97.51) (96.98) (98.06)
Patchwork++ ✗ 96.80 97.39 96.58 97.49 97.69 95.31 97.63 95.79 97.19 96.25 94.35 96.59
GroundGrid ✓ 97.35 97.08 97.54 97.96 98.46 96.64 98.10 96.99 97.64 97.08 95.64 97.32
Ours ✗ 97.63 96.38 97.48 98.71 98.75 96.95 98.05 97.39 97.70 97.10 95.99 97.47
Ours ✓ 98.38 97.69 98.00 99.18 99.05 97.74 98.40 98.23 98.31 97.64 97.03 98.15

Accuracy
GndNet ✗ 95.53 94.88 93.20 93.99 97.10 93.10 96.46 94.52 95.91 93.08 89.81 94.33
2DPass ✗ (98.66) (96.71) (97.71) (97.84) (97.58) (97.69) (98.14) (98.40) 96.69 (96.67) (96.77) (97.53)
Patchwork++ ✗ 96.64 95.96 95.08 96.08 96.39 94.79 96.63 95.88 96.38 94.90 93.75 95.68
GroundGrid ✓ 97.24 95.50 96.48 96.84 97.60 96.32 97.29 97.08 96.97 96.05 95.25 96.60
Ours ✗ 97.56 94.38 96.44 98.02 98.05 96.71 97.23 97.52 97.07 96.11 95.69 96.80
Ours ✓ 98.34 96.39 97.17 98.74 98.52 97.57 97.73 98.31 97.84 96.82 96.80 97.66

IoU
GndNet ✗ 91.97 93.65 91.04 92.55 96.41 88.52 95.22 89.63 93.94 90.41 83.30 91.51
2DPass ✗ (97.41) (95.82) (96.81) (97.22) (96.94) (95.77) (97.42) (96.66) 94.87 (95.15) (94.14) (96.20)
Patchwork++ ✗ 93.79 94.90 93.38 95.09 95.49 91.04 95.36 91.91 94.53 92.78 89.30 93.42
GroundGrid ✓ 94.84 94.33 95.19 96.00 96.97 93.49 96.27 94.15 95.40 94.33 91.64 94.78
Ours ✗ 95.37 93.01 95.08 97.46 97.53 94.07 96.17 94.92 95.51 94.37 92.30 95.07
Ours ✓ 96.81 95.49 96.08 98.37 98.12 95.58 96.85 96.51 96.67 95.38 94.23 96.37

TABLE II
ABLATION ON THE EFFECT OF THE NUMBER OF PAST QUERY FRAMES ON

PERFORMANCE AND QUERY TIME PER SCAN ON SEMANTICKITTI.

Number of frames 1 2 4 8 16
Mean F1 score 97.47 97.77 97.96 98.08 98.15
Mean Accuracy 96.80 97.18 97.42 97.57 97.66
Mean IoU 95.07 95.65 96.00 96.24 96.37
Mean query time (ms) 0.27 0.33 0.48 1.02 2.25

metrics, until saturation is reached at around 16 frames. Fur-
thermore, we show that this additional performance comes at
a small computational cost. Since we merely need to store
the already generated GMMs of past LiDAR frames, only
the runtime of the query function is affected by including
additional frames. Due to our highly parallelized implemen-
tation on the GPU, querying 16 frames with approximately
120.000 query points only needs two additional milliseconds
compared to the single frame query. We can even achieve
nearly the same performance at the cost of only 750 addi-
tional microseconds if we reduce the number of query frames
to eight. Overall, our method requires 4.6 ms to segment a
point cloud into the concentric zone model, fit the GMMs

(a) Without outlier filtering (b) With outlier filtering

Fig. 3. Effect of our proposed outlier filtering. Red Gaussians are
estimated to represent ground, green to represent non-ground. Green points
are correctly classified ground, blue points correctly classified non-ground,
and yellow points are incorrectly classified as non-ground. Without outlier
filtering, the grey outlier points (red box) cause the ground likelihood w.r.t.
elevation to be low for Gaussians representing the ground, thus causing
actual ground points to be misclassified.

and estimate the ground likelihood of Gaussians, in addition
to the query times outlined above. Thus, the approach can run
at 146-205 Hz depending on the number of query frames and
is well suited to real-time applications. All inference times
were measured on an Nvidia RTX A3000M laptop GPU.

We furthermore conduct ablation studies on the effect of



TABLE III
ABLATION ON THE EFFECT OF OUTLIER FILTERING, NUMBER OF

GAUSSIANS PER GMM AND MULTI-FRAME QUERIES ON PERFORMANCE.

Outlier
Filter

Multi-
Frame

Num.
Gauss. Precision Recall F1 score

✗ ✗ 8 98.13 95.85 96.99
✓ ✗ 8 98.03 96.92 97.47
✗ ✓ 8 98.71 97.17 97.93
✓ ✓ 8 98.61 97.69 98.15
✓ ✓ 4 98.54 97.35 97.94
✓ ✓ 16 98.62 97.63 98.12

outlier filtering and the number of Gaussian components in
a GMM in Table III. Outlier filtering slightly reduces the
precision of our approach, but provides a large improvement
to recall, and overall leads to better performance. The cause
of this is visualized in Figure 3, where a few outlier points
cause the likelihood w.r.t. elevation of the actual ground
Gaussians to be low, resulting in many false negative es-
timates. We note that the multi-frame query approach is able
to compensate for some outliers, shown by a smaller relative
improvement in recall and F1 score due to the outlier filtering
than in the single frame setting. This is reasonable, as outliers
tend be inconsistently over time. We also show that using
fewer than our chosen eight Gaussian components in each
GMM reduces the performance of our approach, while using
more Gaussians does not provide more accurate estimates
and requires significantly more computation.

V. CONCLUSION

This paper presented a novel, probabilistic approach to
ground segmentation based on generative modeling of 3D
point clouds with 3D Gaussian Mixture Models. Experi-
mental results show that the proposed approach outperforms
current SotA ground segmentation models using both sin-
gle sensor scans and sequential sensor data. Furthermore,
the GMM-based representation is shown to be effective in
suppressing adverse effects from outlier measurements. The
highly parallelizable nature of the approach allows for an
efficient implementation on GPUs for online execution in
autonomous vehicles. While our approach offers strong per-
formance in automotive scenarios, it makes the assumption
that the sensor is oriented nearly parallel to the ground
for the likelihood calculation and the outlier filtering steps.
Furthermore, the multi-frame inference of our approach
requires accurate sensor pose estimations to project points
into past frames. To address these shortcomings, we believe
that a tighter integration of the GMM representation with
sensor pose estimation is promising future work to improve
the reliability and robustness of ground segmentation.
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