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Abstract—Estimating both the 3D structure and 3D dynamics
of a scene is an important task for autonomous vehicles and
mobility systems. Deep learning based methods have shown
strong performance on this problem, but are only reliable in
their training domain and often do not reason about uncertainty.
Training data that contains information about the detailed
dynamics of a scene is often difficult and costly to acquire, thus
limiting the applicability of such methods. To address these issues,
we propose an uncertainty-aware multi-task neural network that
jointly estimates disparity, optical flow and 3D scene flow from
stereo image pairs in a single model with shared weights for
all tasks. Furthermore, we investigate how labels of individual
subtasks, e.g. disparity, can be used in combination with self-
supervised losses to improve the performance of other subtasks,
such as optical flow. We show that a unified model such as ours
can leverage these supervision types synergistically, to transfer
knowledge even from simpler tasks to more challenging ones. Ad-
ditionally, we propose the first scene flow approach that estimates
uncertainties as variances and multivariate covariance matrices
from the cost volume of each respective task and propagates
them analytically to the pixel-wise output without any further
learned regression. We evaluate the domain adaptability and
pixel-wise uncertainty estimations of our model on both synthetic
and real datasets, including the KITTI scene flow benchmark,
on which our model outperforms prior self-supervised and semi-
supervised methods, while estimating representative uncertainties
for all tasks.

Index Terms—Scene flow, stereo, uncertainty

I. INTRODUCTION

Understanding the 3D structure and 3D dynamics of its
environment is a crucial task for any vision based autonomous
mobile system, because it serves as the foundation for identify-
ing obstacles, self-localization, and other tasks. One approach
to address this problem is scene flow estimation, which models
the dynamics of a scene as a point-wise 3D motion field [1].
This can be broken down into the subtasks of depth and
optical flow estimation from images, where scene flow can
be inferred from a depth image as well as the depth change
and optical flow between two consecutive frames. These
tasks are similar in nature, since they can be expressed as
dense correspondence estimation problems, which form the
basis of scene flow estimation in our approach. Estimating
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Fig. 1: Visualization of 3D scene flow estimates by our
proposed approach. We show a sparse sample of the dense
scene flow estimates.

dense feature correspondences in a pair of stereo images is a
subproblem of estimating optical flow, where the correspon-
dences are constrained to only horizontal displacements in
the image. Thus, we would intuitively expect that a generic
correspondence estimation network can learn from both stereo
matching and optical flow training data. However, as indicated
by task transfer experiments by Xu et al. [2] and further
analyzed in our experiments, the transfer from stereo to optical
flow matching is not trivial. We investigate this issue and
show how self-supervised learning approaches can bridge this
gap to transfer knowledge from dense stereo matching to not
just 2D optical flow matching, but also to 3D scene flow
estimation from partially labeled datasets. A visualization of
the resulting 3D structure and scene flow estimated by our
network is shown in Fig. 1.

Deep learning based methods have shown very strong
results on scene flow estimation and its subtasks, as is evident
from the leaderboards of several public benchmarks [3]–[7]. In
order to reduce the complexity of the scene flow task, some
approaches use a collection of multiple task-specific neural
networks to estimate structure and dynamics separately [8],
[9]. These methods are parameter inefficient and do not exploit
potential synergies between the individual matching tasks,
since every task specific network contains an independent
feature encoder. On the other hand, some approaches estimate
the scene structure and flow jointly [10], [11] using recurrent
update operators. A mixture of self-supervision and labeled
scene flow data is used for training and fine-tuning in such
methods. However, there are few datasets with full scene flow
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annotations [5], [7], [12], [13], out of which only KITTI
contains real, labeled data. Generally, labelling 3D scene flow
data is much more difficult than labeling subcomponents such
as depth, which can be done using range sensors such as
LiDAR. This lack of real-world labels can pose a problem for
the application of deep learning based approaches in safety-
critical systems, since neural networks only perform reliably
in the data domain covered during training. A further problem
for applications in safety-critical systems is that most deep
learning based methods for this task do not reason about the
uncertainty of their estimations.

To address these issues, we propose a neural network
architecture based on Unimatch [2] that efficiently estimates
optical flow, disparity, and disparity change using shared
weights for all tasks. Our method can learn from labels for
individual subtasks of scene flow. We show experimentally
that this improves the accuracy of multiple scene flow subtasks
on a new data domain using labels of only a single subtask.
Notably, we show how disparity (or depth) labels, which are
more easily attained than optical flow or scene flow labels, can
be used to improve the accuracy of flow estimations, despite
flow matching being a much more complex task than disparity
estimation. Our proposed network outputs disparity, disparity
change, optical flow, and their respective uncertainty maps
from a shared set of parameters.

The specific contributions of this paper are:

• We extend the Unimatch framework to a single multi-task
model that can estimate scene flow in the form of optical
flow, disparity, and disparity change using a single set of
weights.

• We furthermore show how established self-supervision
techniques can be leveraged to improve all three outputs
of the network with optional partial supervision of a
network output, thanks to the unified architecture. We
are the first to demonstrate that self-supervised losses act
as a catalyst to enable the transfer of knowledge from
disparity to flow estimation.

• We propose a novel method to output uncertainties in
the form of pixel-wise multivariate Gaussians for image
correspondence tasks, which propagates the underlying
matching uncertainties from cost volumes to the network
output without adjusting them using learned components,
as is commonly done in other works.

We test and validate our contributions through experimental
studies on synthetic and real datasets [4], [12]–[14].

The remainder of this work is structured as follows: Sec-
tion II reviews existing approaches to self-supervised learning
and uncertainty estimation for dense correspondence tasks. We
introduce our proposed approach and training scheme in Sec-
tion III. Section IV presents and discusses experimental results
and Section V draws conclusions and outlines promising future
work.

II. RELATED WORK
A. Self-supervised Geometric Learning

Self-supervision has shown great promise for geometric
learning tasks that are challenging to annotate. This type
of supervision for geometric tasks originates from depth
estimation methods [15]–[19], which commonly employ a
mixture of photometric reconstruction losses and smoothness
reguarization during training. We take inspiration from the
self-supervised losses proposed by these methods to train our
approach. Other works [20], [21] have applied similar losses
and additional data augmentation for occluded areas [22] to the
task of self-supervised optical flow estimation. Finally, [11],
[23]–[27] combine these two classes of self-supervised net-
works to learn scene flow from unlabeled data. Depth is
inferred from either monocular cameras or stereo camera pairs
for scene flow estimation. However, these methods do not rea-
son about the uncertainty of their outputs and can be parameter
inefficient when using separate networks for depth and optical
flow estimation. Furthermore, in contrast to these methods we
show that self-supervision has a synergistic effect with partial
supervision in a multi-task model, improving performance
across multiple tasks, even the task that is partially supervised,
more substantially than either individual type of supervision.

B. Uncertainty Aware Geometric Models

Reliable uncertainty estimation is a crucial element for
deploying learning based methods in the real world. There are
several approaches to estimate confidences and uncertainties
for single image depth estimation [17], [28] or multi-view
stereo depth estimation [29], however they all directly predict
variances or confidences at the output layer of the network,
which is prone to shifts in the data domain. More closely
related to our work is CFNet [30], which uses the variance of
a disparity cost volume to iteratively constrain the search range
for stereo matching. Estimation of uncertainties for dynamics
such as optical and scene flow using deep learning models is
rarely done and when they are estimated, it is in the form
of scalar confidences [31]. In contrast, we argue that the
matching distribution in cost volumes is a strong indicator of
the networks uncertainties. Extending the approach of CFNet,
we are the first to estimate the uncertainty of our network
outputs as multivariate Gaussian distributions in the context of
scene flow estimation. These Gaussians are calculated directly
from the cost volume and propagated to the network output
to quantify the uncertainty of each task.

C. Multi-Task Scene Flow Models

The basis of our approach is formed by the work of
Xu et al. [2], who propose a unified architecture named
Unimatch for optical flow, disparity, and posed monocular
depth estimation. While they demonstrate that training on the
optical flow task can serve as a good initialization to train
depth/disparity estimators, they do not provide a model that
is capable of estimating all tasks jointly. They furthermore
show poor transferability from the depth/disparity task to the
optical flow estimation task, which we overcome in this work.
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Fig. 2: Overview of our network architecture: The image feature extraction of Unimatch is expanded to include information
from temporally and spatially adjacent frames using cross-attention with shared weights in the two ViTs. Up to two cost
volumes are constructed, one for optical flow and one for disparity. From each of these cost volumes, initial predictions are
extracted as Gaussian distributions, which are propagated using self-attention propagation. Disparity change is initialized from
the propagated disparity and flow maps, and then passed through the self-attention propagation module again to account for
occlusions resulting from warping by the optical flow. The propagated estimates are all processed by the convex upsampling
layer to produce final, pixel-wise outputs.

We build on this work and extend the unified architecture
to a single unified model that uses one set of parameters
for disparity, disparity change, and optical flow estimation.
We exclude the monocular depth estimation component, since
initial experimentation showed that the strong reliance on the
cost volume causes depth estimation failures in the case of
static frames and inaccurate depth values for dynamic objects
in the image. Other works such as Manydepth [18] and the
works of Guizilini et al. [10], [19] have shown how cost
volumes can be integrated into monocular depth estimation in
such environments. These approaches require additional, task
specific network components, which contradicts the unified
model approach and increases the reliance on learned biases to
cope with degenerate cases, instead of finding correspondences
between images.

The works of Hur et al. [23], [24] and Guizilini et al. [10]
have proposed self-supervised and semi-supervised approaches
to the task of monocular scene flow estimation. Their ap-
proaches employ multi-task models to estimate depth, optical
flow, and scene flow. Bendig et al. [27] recently proposed
a self-supervised training scheme for scene flow estima-
tion from stereo sequences. We take inspiration from their
self-supervised loss components, but expand the amount of
available training data for semi-supervised learning by in-
cluding supervision on subtasks of our scene flow network.
We show that this partial supervision in combination with
self-supervision is much more effective than either type of
supervision individually and achieve synergistic effects thanks
to our proposed modifications to the Unimatch architecture.

There are several other multi-task approaches to jointly
learning the subtasks of scene flow [9], [26], [32]–[34] that
employ multiple task-specific models. In contrast to all pre-
vious approaches, we propose the first multi-task, image-
based scene flow estimation network that explicitly addresses
uncertainty estimation.

III. APPROACH

We propose a multi-task neural network for scene flow
estimation from two consecutive stereo frames comprised of
images Itl , Itr, It

′

l , It
′

r ∈ RH×W×3 in the left and right cam-
era {l, r} at two consecutive points in time {t, t′} with a given
intrinsic matrix K ∈ R3×3. Our goal is to estimate the structure
of the scene as disparity maps Dt

l ,Dt
r,Dt′

l ,Dt′

r ∈ RH×W .
The dynamics of the scene are estimated as optical
flow maps Ft

l ,Ft
r,Ft′

l ,Ft′

r ∈ RH×W×2, where Ft,Ft′ repre-
sent the motion of pixels from It to It

′
and from It

′

to It, in a camera frame, respectively. To lift opti-
cal flow to scene flow, we estimate disparity change
maps ∆Dt,t′

l ,∆Dt,t′

r ,∆Dt′,t
l ,∆Dt′,t

r ∈ RH×W that model the
change in disparity in a given camera frame, e.g., ∆Dt,t′

l

represents the change in disparity from time t to t′ in
the left camera frame. Together, disparity Dt, the disparity
change ∆Dt,t′ and the optical flow Ft fully parameterize
the forward scene flow in an image from t to t′. Estimating
only disparity at t and t′ and optical flow is not enough, as
it does not account for possible occlusions or motions that
leave the field of view of the camera between consecutive
frames. We model all estimates as Gaussian distributions,
where the disparity and optical flow maps defined above rep-
resent the means of the distributions. We output the respective
variance maps ΣD ∈ RH×W , Σ∆D ∈ RH×W , and covariance
maps ΣF ∈ RH×W×2×2 for disparity, disparity change, and
optical flow predictions.

Our proposed network determines all estimates for each
input frame such that we obtain both forward and backward
optical flow and disparity change in both the left and the right
camera, as well as left and right disparity at each time frame.
Using these outputs, our approach can be trained through
supervision if ground truth labels are available and through
self-supervision using multiple photometric and consistency
losses. An overview of our approach to obtain these outputs is
depicted in Fig. 2. Our network architecture is based on Uni-
match without refinement. We exclude refinement from this



work, because it is a task-specific learned regression, which
has been shown to be effective by several other works [2], [8],
[10], [35], [36], at the cost of additional computation. Instead,
we focus on developing a lightweight, parameter efficient
estimator that can solve multiple tasks with a single set of
weights. The main modifications to the network architecture
and the training methodology of Unimatch are described in
the following.

A. Multi-task Feature Extraction

We follow Unimatch for feature extraction. A shared
convolutional neural network encoder extracts feature
maps F ∈ RH

8 ×W
8 ×128 from all input images. These feature

maps are further processed by a vision transformer (ViT)
consisting of six transformer blocks, each containing a self-
attention and a cross-attention layer. The cross-attention layers
of the ViT are applied in two configurations that share the
same weights. Temporally adjacent feature maps F t and F t′

use 2D shifted window attention [37], while spatially adjacent
stereo feature maps F l and Fr use horizontal 1D attention
along pixel rows.

To construct the downstream cost volumes, the extracted
stereo feature maps are used for the disparity cost volume and
the temporally adjacent feature maps are used for the optical
flow cost volume. This methodology allows our method to
estimate only optical flow or only disparity from a pair of input
images by selecting the respective ViT configuration without
changing the model weights.

B. Uncertainty Estimation from Cost Volumes

As in Unimatch, we generate task-specific global cost
volumes for initial estimates of disparity and optical flow. The
optical flow cost volume CF ∈ RH

8 ×W
8 ×H

8 ×W
8 is generated

from the feature maps output by the sequential configuration
of the ViT, while the disparity cost volume CD ∈ RH

8 ×W
8 ×W

8

is calculated from the feature maps output by the stereo con-
figuration of the ViT. The normalized matching probability is
calculated using the cosine similarity between feature vectors,
followed by a softmax activation.

These cost volumes can be seen as discrete probability dis-
tributions over matching candidates. We observe that they are
close to normally distributed and unimodal, as shown in Fig. 3.
For a matching distribution MT with task T ∈ {F, D}
and corresponding pixel coordinates GT , the mean match ḠT

and element i, j of the (co)variance ΣT,ij over N matching
candidates are given by:

ḠT = MT GT and

ΣT,ij =

N∑
k=1

(GT,ik − ḠT,i)
T MT,k(GT,jk − ḠT,j).

The task of disparity estimation only has a single variance
term, while the optical flow matching distribution yields
a 2× 2 covariance matrix for each entry in the feature map.
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Fig. 3: Disparity matching distributions from the cost vol-
ume (a) and after the propagation and upsampling layers (b).
The discrete probability density function is shown in blue, the
calculated and analytically propagated normal distribution is
visualized in orange. Matching coordinates show a zoomed in
region before upsampling and are not adjusted for upsampling
in (b) to ensure comparability.

C. Scene Flow Estimation

The 3D scene flow between two consecutive images can
be parameterized by the optical flow, disparity in the first
frame and change in disparity for each pixel. Disparity change
can also be understood as the change in depth over time.
Change in disparity is trivial to calculate in non-occluded
areas by warping the disparity map Dt′ to the same image
frame as Dt using the optical flow Ft to produce the warped
disparity Dt′,t. Unimatch proposed a component called self-
attention-propagation, which leverages feature similarity to
fill unmatched areas in disparity and optical flow maps. We
leverage this component to also infer disparity change in
occluded regions, by warping Dt′ by Ft after self-attention
propagation and calculate the difference ∆Dt,t′

init = Dt′,t − Dt.
However, this warping step produces unmatched regions in
the disparity change map again. Therefore, we then apply the
self-attention propagation block again to ∆Dt,t′

init to account
for these gaps. We initialize the disparity change uncertainty
as the sum of the uncertainty of disparity at time t and
the uncertainty of the disparity map warped from time t′

to t: Σt,t′

∆D = Σt′,t
D +Σt

D. Here Σt′,t
D is the variance map Σt′

D

warped by the optical flow Ft.

D. Uncertainty Propagation and Upsampling

The outputs of the cost volumes are processed by two
components, self-attention-propagation and convex upsam-
pling, which both output weighted sums of their respective
inputs. The weights of the self-attention propagation block
are predicted from global feature similarity and the weights
of the convex upsampling layer are predicted directly using a
convolutional layer. This allows us to propagate the variances
and covariances calculated from the cost volume analyti-
cally, instead of regressing them using learned components.
A weighted sum of Gaussians does not strictly result in
another Gaussian distribution. However, we observe that after
each propagation layer, the probability distributions remain
approximately Gaussian as shown in Fig. 3. Therefore, we
propagate means and (co)variances analytically. For N terms



in the weighted sum, wk is the predicted weight associated
with the distribution Nk(µk,Σk), with k ∈ N . Here the
means µ are the elements of the matrix Ḡ. With slight abuse
of notation for generality, the propagation of the mean and
(co)variance are given by:

µ̂ =

N∑
k=1

wkµk and

Σ̂ij =

N∑
k=1

wk(Σk,ij + µk,iµk,j)−
N∑

k=1

wkµk,i

N∑
k=1

wkµk,j .

The estimated pixel-wise (co)variances represent het-
eroscedastic aleatoric uncertainty estimates [28].

E. Supervised Losses

For experiments without supervision of the estimated un-
certainties, we use the same supervised losses as Unimatch.
Namely, these are the L1 loss for optical flow, the smooth L1

loss and an inverse depth gradient loss for disparity, and the L1

loss for disparity change.
To supervise uncertainty, we modify the L1 based disparity

change/disparity losses and optical flow loss as

LD(D̂,D,ΣD) =
|D̂ − D|
ΣD

+ λ log(ΣD) and

LF (F̂,F,ΣF ) = (F̂ − F)⊤Σ−1
F (F̂ − F) + λ log(|ΣF |),

respectively. These losses are comprised of the 1D and 2D Ma-
halanobis distance and a regularization term to regularize the
magnitude of the uncertainty. The disparity change loss L∆D

is calculated the same way as LD, but with disparity change
maps and uncertainties instead. We set the regularization
factor λ to 0.02 after hyperparameter tuning.

For supervised training, the total loss is calculated as

Lsup = λFLF + λDLD + λ∆DL∆D

where λF , λD and λ∆D are respectively set to 3, 1, and 3
after hyperparameter tuning.

F. Self-supervised Losses

In addition to the supervised losses, we also employ self-
supervision for all estimations. The self-supervision loss terms
consist of a set of photometric errors based on differentiable
grid sampling [38], as well as consistency and smoothness
terms for regularization, which we will describe in the fol-
lowing in more detail. In general, we mask all losses that
involve multiple frames using occlusion masks derived from
a forward-backward optical flow [21] and equivalent left-
right disparity consistency check for temporally and spatially
adjacent frames, respectively.

Photometric losses: We warp the image It
′

towards the
image It using the estimated forward optical flow Ft to
produce the warped image It

′,t. Similarly, we warp right
images Ir towards left images Il using the estimated disparity
map Dl to produce the warped image Ir,l. The warping steps
above are conducted for all estimations in all input image

frames, such that the forward and backward estimated optical
flow in the left and right images, as well as the left and right
disparities at time t and t′ are supervised using the photometric
loss. To supervise points that lie past the image border in one
of the frames due to non overlapping fields of view, we train
on image crops, but consider the entire original image during
grid sampling.

We follow Godard et al. [15] and use a weighted average
of the photometric loss [39] and structural similarity index
(SSIM) [40] with a window size of five pixels

Lp(It, It
′,t) = α

1− SSIM(It, It
′,t)

2
+ (1− α)||It − It

′,t||1

with weight α = 0.85.
Smoothness losses: As is common practice, we use edge-

aware smoothness losses [15] as regularization. These terms
encourage similar estimations in textureless image regions and
allow discontinuities in regions with high image gradients.
We apply edge aware smoothness to stereo disparity maps, as
well as the individual x and y components of the optical flow
estimates. All inputs to this loss term are mean normalized to
discourage shrinking of the estimations [41].

Consistency losses: Since we output the optical flow,
disparity, and disparity change between all image pairs, several
consistency constraints can provide additional regularization.

For optical flow estimations, we maximize the forward-
backward consistency by minimizing the sum of the forward
flow Ft and the backwards warped backward flow Ft′,t. We
apply a similar constraint on the left disparity Dl and the left
warped right disparity Dr,l, but minimize their L1 difference
instead of their sum. As with the photometric losses, the
consistency losses are applied to all model outputs in all four
camera frames.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance and espectially the transfer-
ability of knowledge between different tasks thanks to our
proposed multi-task architecture, we evaluate on both synthetic
and real datasets. FlyingThings3D [12] is used for ablations
of our model architecture and pretraining for other tasks.
Initial experiments regarding cross-task knowledge transfer
and uncertainty estimation are conducted on the synthetic
VKITTI2 dataset [13] and use the models pretrained on
FlyingThings3D. Final evaluations and comparisons to other
state-of-the-art (SOTA) models are carried out on the real-
world KITTI [4], [5] scene flow benchmark, where models
are trained on a collection of synthetic data [12], [13], [42]
and self-supervised on the KITTI dataset.

A. Datasets

Sceneflow [12] contains three synthetic datasets; FlyingTh-
ings3D, Driving, and Monkaa. FlyingThings3D contains dy-
namic, synthetic objects from the ShapeNet [43] dataset with
random textures, Driving is set in an automotive context and
Monkaa contains assets from an open source Blender short
film. Labels for all datasets include disparity, optical flow, and



disparity change. We only use FlyingThings3D for ablation
studies and use the Driving dataset during the final training
of our network for benchmarking. For ablations, we follow
Unimatch [2] and split 1024 samples from the training set
of FlyingThings3D for validation, and test on the official
validation split.

VKITTI2 [13] is a photorealistic, synthetic automotive
dataset that reconstructs five sequences from the KITTI [4]
dataset. Labels include dense depth, optical flow, scene flow
maps, and camera extrinsics. We convert the depth maps to
disparity maps using the camera intrinsics and stereo baseline.
Disparity change is calculated from the Z component of the
scene flow labels. For ablations, we use scenes 1, 6, and 20
for training, scene 18 for validation and scene 2 for testing.
For final evaluations we use the entire dataset for training. We
use this dataset for initial ablations regarding domain transfer
and uncertainty estimation of our approach, since it contains
dense, perfect ground truth labels.

KITTI [4] is an automotive dataset that is used for bench-
marking optical flow, disparity, depth, and scene flow. It
contains sparse annotations for all afforementioned tasks. We
use the Eigen split for self-supervised trainings, excluding the
training and test frames of the KITTI scene flow benchmark.
For testing, we use the 200 annotated training frames from the
KITTI scene flow benchmark [5]. We do not use any labels
from the KITTI scene flow dataset during training.

Tartanair [42] is a synthetic dataset for simultaneous
localization and mapping. It consists of stereo camera data
including annotated camera poses, depth and optical flow. We
use this dataset for pretraining our model after ablation studies
for final evaluation on the KITTI benchmark.

B. Evaluation Metrics

The End-point-error (Epe) measures the euclidean distance
in pixels between the end points of estimated disparity or op-
tical flow vectors and the corresponding ground-truth vectors.
It is calculated as ||F − F̂|| and ||D − D̂||, respectively.

We furthermore use the outlier metrics for disparity, optical
flow and scene flow from the KITTI dataset to evaluate.
The D1, D2, Fl, and SF outlier metrics are the fraction of
pixels that are incorrectly estimated in the disparity map at
time t, disparity map at time t′, the optical flow map between
them and the entire scene flow estimate, respectively. Disparity
or optical flow estimates for a pixel are classified as correct
if their Epe is less than three pixels, or less than five percent
of the magnitude of the ground truth vector. The scene flow
estimate for a pixel is classified as correct if both disparity
estimates and the optical flow between them are classified as
correct.

C. Experimental Protocol

All models are implemented using Pytorch [44]. If multiple
datasets are used for training, they are randomly sampled to
create mixed batches. Network hyperparameters are identical
to Unimatch [2] with a channel size of 128 and no refinement

steps. Forward and backward flows and left and right dispar-
ities are efficiently estimated by transposing the respective
cost volume. The entire model has 5.4 million trainable
parameters and achieves an inference time of 63 milliseconds,
thus achieving a frame rate of 15 FPS to predict disparity,
optical flow and disparity change maps for all four cameras in
a stereo image pair. Inference time is measured on a Nvidia
RTX 6000 Ada GPU. We use the AdamW [45] optimizer
with β1 = 0.9 and β2 = 0.999 and a one cycle learning rate
policy [46] with a learning rate of 4e−4 and cosine annealing.
All ablation trainings run for 2e5 iterations with a batch size
of four on a Nvidia RTX 6000 Ada GPU. For our final
evaluation we pretrain on VKITTI2 [13], Tartanair [42] and all
of Sceneflow [12] for 5e5 iterations with a batch size of eight
on four GPUs. We continue training using mixed supervision
on Driving, VKITTI2, and self-supervision on KITTI for 5e4
iterations with a learning rate of 2e−5 and a batch size of four.
The final training takes approximately 24 hours to complete.

D. Ablations

We study the ability of our multi-task network to benefit
from individual task supervision and report the results in
Table I. We show that multi-task training is feasible and
beneficial for transferring knowledge to unlabeled or only
partially labeled domains.

We firstly verify that our choice of a multi-task model
with shared weights does not harm model performance. For
this, we train separate models on only the optical flow and
the disparity estimation task, and one model on both tasks
simultaneously using the FlyingThings3D dataset. We eval-
uate on both FlyingThings3D and VKITTI2. The results of
this are reported in the first three rows of the table. It is
evident that transferring knowledge from the optical flow task
to the disparity estimation task is easier than transferring
from disparity estimation to optical flow estimation. This is
shown in row two by the poor performance on the task
of optical flow estimation by the model trained only on
disparity estimation, and the comparatively good performance
on the task of disparity estimation by the model trained on
optical flow estimation in row one. Introducing multi-task
training in row three maintains the performance of optical
flow estimation both on in-domain (evaluations and training
on FlyingThings3D) and out-of-domain data (evaluations on
VKITTI2, with training on FlyingThings3D), while causing
a minor reduction in the quality of disparity estimation. We
attribute this to the model learning a task-specific bias when it
is only trained on disparity estimation. This bias only appears
for disparity estimation and not for optical flow estimation.
This is reasonable, as disparity estimation is a strict subset of
the task of optical flow estimation, thus any bias that is learned
during optical flow estimation likely also benefits disparity
estimation.

The true strength of the proposed multi-task model comes
into play when considering additional data domains, for which
training data may be limited. In rows four to six of the table,
we investigate how the task transfer capability of the model



TABLE I: Ablation study results on multi-task learning and domain transfer. We train models on different task combinations
using supervision and self-supervision on FlyingThings3D (F) and VKITTI2 (V).

Supervised Self-supervised FlyingThings3D (final) VKITTI2
Flow Disp Flow Disp Flow Epe Disp. Epe Fl D1 Flow Epe Disp. Epe Fl D1

F - - - 13.00 5.84 12.69 11.00 6.06 4.46 26.07 56.82
- F - - 77.39 4.71 98.89 3.46 44.11 3.63 98.08 50.16
F F - - 13.00 4.76 12.64 4.10 6.01 3.81 26.98 50.68

F+V F - - 13.20 4.70 13.02 3.92 1.38 3.20 9.21 34.80
F F+V - - 13.10 4.74 12.86 4.26 6.91 1.82 33.60 14.61

F+V F+V - - 13.25 4.78 13.71 4.37 1.28 1.50 7.96 8.19
F F F+V F+V 13.15 4.81 12.69 4.04 5.11 2.96 19.31 27.51

F+V F F+V F+V 13.31 4.77 13.17 4.17 1.31 2.93 8.08 24.59
F F+V F+V F+V 12.97 4.80 12.64 4.08 4.48 1.30 17.11 4.98

TABLE II: Ablation study of our proposed components on the
KITTI training set. (S) Synthetic data, (SSL) Self-supervision
on real data during training

Scene Flow Training D1-all D2-all Fl-all SF-all
Disparity Change S 16.95 24.15 34.72 41.65

Warp Output S + SSL 4.74 17.08 17.70 23.00
Disparity Change S + SSL 4.74 11.96 17.70 20.97

can be used to transfer knowledge to a new data domain, in this
case the domain of VKITTI2, shown in the last four columns
of the table. For this, all models are supervised on both tasks
using FlyingThings3D and the three models are additionally
supervised on optical flow estimation, disparity estimation or
both tasks using VKITTI2. In row four, we observe that adding
optical flow labels from VKITTI2 improves the performance
of all tasks, when comparing to training only on FlyingTh-
ings3D in row three. Contrary to this, in row five we observe
that adding disparity labels from VKITTI2 only improves the
performance on the disparity estimation task on the VKITTI2
test set, while the performance of optical flow estimation
degrades, increasing the end-point-error by 15% from 6.01
to 6.91. Finally, row six shows that adding supervision for
both tasks produces the best results compared to adding labels
for each subtask. We note that by adding supervision labels
from the VKITTI2 domain, the performance of the model on
FlyingThings3D degrades slightly as the total domain covered
expands.

While these results show that transferability from the optical
flow estimation task to the disparity estimation task exists
on a new data domain, they also demonstrate that it is not
trivial to transfer knowledge in the opposite direction, from
disparity to optical flow estimation. To bridge this gap, in
rows seven to nine of the table, we investigate the effects
of self-supervised learning, which can be applied in the
absence of labels. We focus on the evaluation on the VKITTI2
dataset for this. Firstly, in row seven we report the results of
training with FlyingThings3D labels only, while adding self-
supervision on both domains. Self-supervision improves all
metrics on VKITTI2 compared to row three. The performance
on all three tasks further improves by adding optical flow
supervision in row eight. Importantly, in row nine we can
observe that adding only disparity supervision in combination

(a) RGB image (b) Predicted disparity map

(c) Error to GT disparity (d) Predicted variances

Fig. 4: Visualization of disparity and uncertainty estimations of
our method compared to the ground truth error. The estimated
variance matches the ground truth error and peaks at object
boundaries and high frequency areas.

with self-supervision is able to overcome the gap shown
previously, as all three tasks improve on the VKITTI2 domain
compared to only training on FlyingThings3D in row three.
Notably, the Epe on the optical flow task is reduced by 25%,
from 6.01 to 4.48, compared to a reduction in Epe by only
15%, from 6.01 to 5.11 when only the self-supervised losses
are applied. At the same time, self-supervision with partial
supervision even improves the supervised task more than only
using supervision of that task. This is evident comparing row
four with row eight, where the optical flow Epe is reduced
from 1.38 to 1.31 on VKITTI2, and by comparing row five
with row nine, where the disparity Epe is reduced from 1.82
to 1.30 by adding self-supervision.

This ablation study confirms two important aspects of our
proposed multi-task model. Firstly, there is no significant loss
in performance resulting from the combination of several
tasks into one unified model. Secondly, using self-supervised
losses in combination with partial labels is very effective
in transferring knowledge between the different tasks. The
addition of self-supervised losses act as a catalyst for the
knowledge transfer from the simpler disparity estimation task
to the more complex optical flow estimation task.

Next, we further validate the effectiveness of self-supervised
learning and our contributions to the Unimatch network ar-
chitecture for scene flow estimation in Table II. In contrast



Fig. 5: Examples of the estimated optical flow uncertainty. Flow estimates are shown in green, ground truth flow in red. The
estimated covariance is visualized by ellipsoids.

to the previous ablation study, we also evaluate the scene
flow estimations of the model. To validate that self-supervision
benefits the model, we train a model purely synthetically on
FlyingThings3D and VKITTI2 (row one), and one model on
the same synthetic data, with self-supervision on real data
(row three). We again see a clear performance boost across
all metrics. Secondly, we compare explicit disparity change
estimation to naively warping the second disparity map to the
first image frame using the optical flow estimate to compute
scene flow in row two and row three. We observe that the
inclusion of disparity change into the estimation provides a
clear, significant benefit to the estimation of the disparity at t′

and the accuracy of the full scene flow estimate.

E. Uncertainty Estimation

A qualitative example of the uncertainty estimations of our
method is provided in Fig. 4, where we compare the ground
truth error of the estimated disparity map to the predicted
variances from our network. The variance estimates accurately
reflect the actual error with peaks at object boundaries and in
high frequency image regions.

We furthermore show examples of the covariances of the
optical flow estimates in Fig. 5. For the leftmost point, a corner
of a lane marking that is easy to track, we observe a low
uncertainty perpendicular to the motion of the point, and a
larger uncertainty in the direction of motion. The remaining
three example points belong to more ambiguous surfaces, in
mostly textureless regions. These points are associated with a
larger prediction error, which is accurately represented by the
larger uncertainty estimated by our method. We note that the
direction of the error (the difference between the tips of the
green and red arrows) aligns well with the principal component
of the error ellipsoid. In general, the model seems to learn
a fundamental uncertainty in the direction of motion of the
points, but also represents deviations from the ground truth
optical flow in the error ellipsoids.

TABLE III: Comparison to SOTA self-supervised and semi-
supervised scene flow estimation methods on the KITTI scene
flow benchmark. * denotes results on the KITTI training set.
Best results on the KITTI test set are denoted in bold.

Method D1-all D2-all Fl-all SF-all

Mono

Self-Mono-SF [23] 34.02 36.34 23.54 49.54
Multi-Mono-SF [24] 30.78 34.41 19.54 44.04

RAFT-MSF [11] 21.21 27.51 18.37 34.98
DRAFT* [10] 26.41 28.89 18.71 37.58

Stereo

Self-SuperFlow [27] 8.11 21.57 23.67 28.71
UnOS [26] 6.67 12.05 18.00 22.32

Ours 4.96 13.02 17.93 21.74
Ours* 4.74 11.96 17.70 20.97

Both of these examples show that the output uncertainty can
be used to identify unreliable regions in the prediction of the
output components for downstream tasks.

F. Comparison with Other Methods

We compare the performance of our model on the KITTI
scene flow benchmark [14] with published self-supervised and
semi-supervised monocular and stereo scene flow estimation
methods in Table III. For this, we choose methods that do not
use the training dataset of the KITTI scene flow benchmark.
We include DRAFT [10] in our evaluations, since their semi-
supervised training methodology using labeled synthetic data
and unlabeled real data is most similar to ours, but the authors
only provide results on the KITTI scene flow training set.
We recognize that our method is not fully self-supervised,
but semi-supervised due to the use of synthetic training data.
However, to the best of our knowledge, no semi-supervised
stereo scene flow estimation method has reported their results
on the KITTI leaderboard.

We show that our multi-task model outperforms both self-
supervised and semi-supervised methods on most metrics.
Notably we outperform the stereo scene flow estimation of
UnOS [26], which uses estimated camera poses and rigidity



assumptions in a postprocessing step to improve the scene flow
estimation in static image regions. Our approach delivers more
accurate scene flow estimates without such a postprocessing,
but could further benefit from it.

Furthermore, our approach outperforms DRAFT [10] in
the optical flow metric. This is notable, because the semi
supervised training methodology of DRAFT is most similar
to our approach. As DRAFT is a monocular scene flow
approach, it is naturally more difficult to estimate disparity, but
estimating optical flow is independent of stereo or monocular
configurations. Despite DRAFT using proprietary photoreal-
istic synthetic data [47], which can be argued is visually
more realistic data than VKITTI2, our approach achieves more
accurate optical flow results.

V. CONCLUSION

This paper introduces a unified neural network and training
methodology for the estimation of disparity, optical flow,
and scene flow from stereo camera images. We parameterize
these tasks using a single set of learned, shared weights for
each independent task which enables the network to adapt to
new data domains through partially or unlabeled data using
self-supervised losses to stabilize the knowledge transfer. We
rigorously validate this transfer of knowledge between tasks
using synthetic and real datasets. Furthermore, we demonstrate
that the matching distribution of cost volumes can be used
to extract representative estimates of the network uncertainty.
Using no real labeled data, we achieve state-of-the-art results
on the KITTI scene flow dataset, outperforming prior self-
supervised and semi-supervised approaches. One shortcoming
of our work is that we only estimate the uncertainty of the
separate scene flow tasks, effectively considering each task
to be independent of the others. We plan to address this in
the future by producing a coherent scene flow output with
a full covariance matrix to model the interactions between
outputs. Further gains in accuracy and robustness could be
achieved by considering longer image sequences, both during
self-supervised training and inference. Such approaches have
recently found purchase in optical flow estimation [48], [49],
but are relatively unexplored in the scene flow domain. Es-
timating uncertainties in such a setting would be particularly
interesting, where an approach similar to ours could facilitate
a probabilistic temporal fusion.
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